On étudie un problème aux limites de Neumann associé à un opérateur différentiel non homogène. En tenant compte de la compétition entre le taux de croissance de la nonlinéarité et les valeurs du paramètre de bifurcation, on établit des conditions suffisantes pour l’existence de solutions non triviales dans un certain espace fonctionnel du type Orlicz–Sobolev.
We study a nonlinear Neumann boundary value problem associated to a nonhomogeneous differential operator. Taking into account the competition between the nonlinearity and the bifurcation parameter, we establish sufficient conditions for the existence of nontrivial solutions in a related Orlicz–Sobolev space.
Keywords: Nonhomogeneous differential operator, nonlinear partial differential equation, Neumann boundary value problem, Orlicz–Sobolev space
Mot clés : opérateur différentiel non homogène, équation aux dérivées partielles non linéaire, problème de Neumann, espace d’Orlicz–Sobolev
Mihăilescu, Mihai 1 ; Rădulescu, Vicenţiu 2
@article{AIF_2008__58_6_2087_0, author = {Mih\u{a}ilescu, Mihai and R\u{a}dulescu, Vicen\c{t}iu}, title = {Neumann problems associated to nonhomogeneous differential operators in {Orlicz{\textendash}Sobolev} spaces}, journal = {Annales de l'Institut Fourier}, pages = {2087--2111}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {58}, number = {6}, year = {2008}, doi = {10.5802/aif.2407}, zbl = {1186.35065}, mrnumber = {2473630}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2407/} }
TY - JOUR AU - Mihăilescu, Mihai AU - Rădulescu, Vicenţiu TI - Neumann problems associated to nonhomogeneous differential operators in Orlicz–Sobolev spaces JO - Annales de l'Institut Fourier PY - 2008 SP - 2087 EP - 2111 VL - 58 IS - 6 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2407/ DO - 10.5802/aif.2407 LA - en ID - AIF_2008__58_6_2087_0 ER -
%0 Journal Article %A Mihăilescu, Mihai %A Rădulescu, Vicenţiu %T Neumann problems associated to nonhomogeneous differential operators in Orlicz–Sobolev spaces %J Annales de l'Institut Fourier %D 2008 %P 2087-2111 %V 58 %N 6 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2407/ %R 10.5802/aif.2407 %G en %F AIF_2008__58_6_2087_0
Mihăilescu, Mihai; Rădulescu, Vicenţiu. Neumann problems associated to nonhomogeneous differential operators in Orlicz–Sobolev spaces. Annales de l'Institut Fourier, Tome 58 (2008) no. 6, pp. 2087-2111. doi : 10.5802/aif.2407. https://aif.centre-mersenne.org/articles/10.5802/aif.2407/
[1] Regularity results for a class of functionals with non-standard growth, Arch. Ration. Mech. Anal., Volume 156 (2001) no. 2, pp. 121-140 | DOI | MR | Zbl
[2] Sobolev spaces, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975 (Pure and Applied Mathematics, Vol. 65) | MR | Zbl
[3] Analyse fonctionnelle, Collection Mathématiques Appliquées pour la Maîtrise. [Collection of Applied Mathematics for the Master’s Degree], Masson, Paris, 1983 (Théorie et applications. [Theory and applications]) | Zbl
[4] Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math., Volume 66 (2006) no. 4, p. 1383-1406 (electronic) | DOI | MR | Zbl
[5] Mountain pass type solutions for quasilinear elliptic equations, Calc. Var. Partial Differential Equations, Volume 11 (2000) no. 1, pp. 33-62 | DOI | MR | Zbl
[6] Existence of solutions to a semilinear elliptic system through Orlicz-Sobolev spaces, Mediterr. J. Math., Volume 1 (2004) no. 3, pp. 241-267 | DOI | MR
[7] Sobolev Embedding Theorems in Orlicz Spaces, University of Köln (1966) (Ph. D. Thesis)
[8] Theorical and numerical results for electrorheological fluids, University of Freiburg (2002) (Ph. D. Thesis) | Zbl
[9] Maximal function on Musielak-Orlicz spaces and generalized Lebesgue spaces, Bull. Sci. Math., Volume 129 (2005) no. 8, pp. 657-700 | DOI | MR | Zbl
[10] Orlicz-Sobolev spaces and imbedding theorems, J. Functional Analysis, Volume 8 (1971), pp. 52-75 | DOI | MR | Zbl
[11] On norms, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., Volume 455 (1999) no. 1981, pp. 219-225 | DOI | MR | Zbl
[12] Density of smooth functions in , Proc. Roy. Soc. London Ser. A, Volume 437 (1992) no. 1899, pp. 229-236 | DOI | MR | Zbl
[13] Sobolev embeddings with variable exponent, Studia Math., Volume 143 (2000) no. 3, pp. 267-293 | MR | Zbl
[14] On the variational principle, J. Math. Anal. Appl., Volume 47 (1974), pp. 324-353 | DOI | MR | Zbl
[15] Sobolev embedding theorems for spaces , J. Math. Anal. Appl., Volume 262 (2001) no. 2, pp. 749-760 | DOI | MR | Zbl
[16] On the spaces and , J. Math. Anal. Appl., Volume 263 (2001) no. 2, pp. 424-446 | DOI | MR | Zbl
[17] Electrorheological Fluids, Science, Volume 258 (1992) no. 5083, pp. 761 -766 | DOI
[18] On spaces and , Czechoslovak Math. J., Volume 41(116) (1991) no. 4, pp. 592-618 | MR | Zbl
[19] On the isometries of certain function-spaces, Pacific J. Math., Volume 8 (1958), pp. 459-466 | MR | Zbl
[20] Regularity and existence of solutions of elliptic equations with -growth conditions, J. Differential Equations, Volume 90 (1991) no. 1, pp. 1-30 | DOI | MR | Zbl
[21] Nonhomogeneous boundary value problems in anisotropic Sobolev spaces, C. R. Math. Acad. Sci. Paris, Volume 345 (2007) no. 10, pp. 561-566 | MR | Zbl
[22] A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., Volume 462 (2006) no. 2073, pp. 2625-2641 | DOI | MR
[23] Existence and multiplicity of solutions for quasilinear nonhomogeneous problems: an Orlicz-Sobolev space setting, J. Math. Anal. Appl., Volume 330 (2007) no. 1, pp. 416-432 | DOI | MR
[24] On a nonhomogeneous quasilinear eigenvalue problem in Sobolev spaces with variable exponent, Proc. Amer. Math. Soc., Volume 135 (2007) no. 9, p. 2929-2937 (electronic) | DOI | MR
[25] Continuous spectrum for a class of nonhomogeneous differential operators, Manuscripta Math., Volume 125 (2008) no. 2, pp. 157-167 | DOI | MR | Zbl
[26] On modular spaces, Studia Math., Volume 18 (1959), pp. 49-65 | MR | Zbl
[27] Orlicz spaces and modular spaces, Lecture Notes in Mathematics, 1034, Springer-Verlag, Berlin, 1983 | MR | Zbl
[28] Modulared Semi-Ordered Linear Spaces, Maruzen Co. Ltd., Tokyo, 1950 | MR | Zbl
[29] Fractional integration in Orlicz spaces, Trans. Amer. Math. Soc., Volume 115 (1965), pp. 300-328 | DOI | Zbl
[30] Über konjugierte Exponentenfolgen, Studia Math., Volume 3 (1931), pp. 200-211 | Zbl
[31] Mathematical modelling of electrorheological fluids, Cont. Mech. Term., Volume 13 (2001), pp. 59-78 | DOI | Zbl
[32] Electrorheological fluids: modeling and mathematical theory, Sūrikaisekikenkyūsho Kōkyūroku (2000) no. 1146, pp. 16-38 Mathematical analysis of liquids and gases (Japanese) (Kyoto, 1999) | MR | Zbl
[33] Variational methods, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 34, Springer-Verlag, Berlin, 1996 (Applications to nonlinear partial differential equations and Hamiltonian systems) | MR | Zbl
[34] Averaging of functionals of the calculus of variations and elasticity theory, Izv. Akad. Nauk SSSR Ser. Mat., Volume 50 (1986) no. 4, p. 675-710, 877 | MR | Zbl
[35] Meyer-type estimates for solving the nonlinear Stokes system, Differ. Uravn., Volume 33 (1997) no. 1, p. 107-114, 143 | MR | Zbl
Cité par Sources :