Differential Equations associated to Families of Algebraic Cycles
Annales de l'Institut Fourier, Volume 58 (2008) no. 6, pp. 2075-2085.

We develop a theory of differential equations associated to families of algebraic cycles in higher Chow groups (i.e., motivic cohomology groups). This formalism is related to inhomogenous Picard–Fuchs type differential equations. For a families of K3 surfaces the corresponding non–linear ODE turns out to be similar to Chazy’s equation.

Nous développons une théorie d’équations associées aux familles de cycles algébriques dans des groupes de Chow supérieurs. Ce formalisme est lié au type inhomogène d’équations de Picard-Fuchs. Pour les familles de surfaces K3 l’équation différentielle ordinaire non-linéaire est semblable à l’équation de Chazy.

DOI: 10.5802/aif.2406
Classification: 14C25, 19E20
Keywords: Higher Chow group, Picard-Fuchs operator, normal function, differential equation
Mot clés : groupe de Chow supérieur, opérateur de Picard-Fuchs, fonction normale, équation différentielle

del Angel, Pedro Luis 1; Müller-Stach, Stefan 2

1 CIMAT Guanajuato, Mexico (Mexique)
2 Johannes Gutenberg–Universität Mainz Institut für Mathematik Fachbereich 08 (Deutschland)
@article{AIF_2008__58_6_2075_0,
     author = {del Angel, Pedro Luis and M\"uller-Stach, Stefan},
     title = {Differential {Equations} associated to {Families} of {Algebraic} {Cycles}},
     journal = {Annales de l'Institut Fourier},
     pages = {2075--2085},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {58},
     number = {6},
     year = {2008},
     doi = {10.5802/aif.2406},
     mrnumber = {2473629},
     zbl = {1151.14009},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2406/}
}
TY  - JOUR
AU  - del Angel, Pedro Luis
AU  - Müller-Stach, Stefan
TI  - Differential Equations associated to Families of Algebraic Cycles
JO  - Annales de l'Institut Fourier
PY  - 2008
SP  - 2075
EP  - 2085
VL  - 58
IS  - 6
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2406/
DO  - 10.5802/aif.2406
LA  - en
ID  - AIF_2008__58_6_2075_0
ER  - 
%0 Journal Article
%A del Angel, Pedro Luis
%A Müller-Stach, Stefan
%T Differential Equations associated to Families of Algebraic Cycles
%J Annales de l'Institut Fourier
%D 2008
%P 2075-2085
%V 58
%N 6
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.2406/
%R 10.5802/aif.2406
%G en
%F AIF_2008__58_6_2075_0
del Angel, Pedro Luis; Müller-Stach, Stefan. Differential Equations associated to Families of Algebraic Cycles. Annales de l'Institut Fourier, Volume 58 (2008) no. 6, pp. 2075-2085. doi : 10.5802/aif.2406. https://aif.centre-mersenne.org/articles/10.5802/aif.2406/

[1] André, Y. G –functions, Aspects of Mathematics, E13, Viehweg Verlag, 1989

[2] Bloch, S. Higher Chow groups: Basic definitions and properties (Homepage Bloch)

[3] Bloch, S. Algebraic cycles and the Beilinson conjectures, Contemporary Math., Volume 58 (1986), pp. 65-79 | MR | Zbl

[4] Boalch, Ph. Symplectic manifolds and isomonodromic deformations, Adv. Math., Volume 163 (2001) no. 2, pp. 137-205 | DOI | MR | Zbl

[5] Carlson, J.; Müller-Stach, S.; Peters, Ch. Period mappings and period domains, Cambridge Univ. Press, 2003 | MR | Zbl

[6] Chazy, J. Sur les équations différentielles du troisième ordre et d’ordre supérieur dont l’intégrale générale a ses points critiques fixes, Acta Math., Volume 34 (1910), pp. 317-385 | DOI

[7] del Angel, P. L.; Müller-Stach, S. The transcendental part of the regulator map for K 1 on a family of K3 surfaces, Duke Journal, Volume 12 (2002) no. 3, pp. 581-598 | DOI | Zbl

[8] Deligne, P. Équations différentielles à points réguliers singuliers, Springer, 1970 | MR | Zbl

[9] Fuchs, R. Über lineare homogene Differentialgleichungen zweiter Ordnung mit drei im Endlichen gelegenen wesentlich singulären Stellen, Math. Ann., Volume 63 (1907), pp. 301-321 | DOI | MR

[10] Griffiths, Ph. A theorem concerning the differential equations satisfied by normal functions associated to algebraic cycles, Amer. J. Math., Volume 101 (1979), pp. 94-131 | DOI | MR | Zbl

[11] Kerr, M.; Lewis, J.; Müller–Stach, S. The Abel-Jacobi map for higher Chow groups, Compositio Math., Volume 142 (2006), pp. 374-396 | DOI | MR | Zbl

[12] Kulikov, V. Mixed Hodge structures and singularities, Cambridge Univ. Press, 1998 | MR | Zbl

[13] Manin, Y. I. Sixth Painlevé equation, universal elliptic curve and mirror of 2 , Amer. Math. Soc. Translations, Volume 186 (1998) no. 2, pp. 131-151 | MR | Zbl

[14] Morrison, D.; Walcher, J. D–branes and normal functions (2007) (Preprint hep-th/0709402)

[15] Müller–Stach, S. Constructing indecomposable motivic cohomology classes on algebraic surfaces, J. Algebraic Geom., Volume 6 (1997), pp. 513-543 | MR | Zbl

[16] Painlevé, P. Stockholm lectures, Hermann Paris, 1897

[17] Saito, M. Admissible normal functions, J. Algebraic Geom., Volume 5 (1996), pp. 235-276 | MR | Zbl

[18] Steenbrink, J.; Zucker, S. Variation of mixed Hodge structure I, Invent. Math., Volume 80 (1985), pp. 489-542 | DOI | MR | Zbl

[19] Stiller, P. Special values of Dirichlet series, monodromy, and the periods of automorphic forms, AMS, 1984 | MR | Zbl

[20] Umemura, U. 100 years of the Painlevé equation, Sugaku, Volume 51 (1999) no. 4, pp. 395-420 | MR

Cited by Sources: