Nous développons une théorie d’équations associées aux familles de cycles algébriques dans des groupes de Chow supérieurs. Ce formalisme est lié au type inhomogène d’équations de Picard-Fuchs. Pour les familles de surfaces K3 l’équation différentielle ordinaire non-linéaire est semblable à l’équation de Chazy.
We develop a theory of differential equations associated to families of algebraic cycles in higher Chow groups (i.e., motivic cohomology groups). This formalism is related to inhomogenous Picard–Fuchs type differential equations. For a families of K3 surfaces the corresponding non–linear ODE turns out to be similar to Chazy’s equation.
Keywords: Higher Chow group, Picard-Fuchs operator, normal function, differential equation
Mot clés : groupe de Chow supérieur, opérateur de Picard-Fuchs, fonction normale, équation différentielle
del Angel, Pedro Luis 1 ; Müller-Stach, Stefan 2
@article{AIF_2008__58_6_2075_0, author = {del Angel, Pedro Luis and M\"uller-Stach, Stefan}, title = {Differential {Equations} associated to {Families} of {Algebraic} {Cycles}}, journal = {Annales de l'Institut Fourier}, pages = {2075--2085}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {58}, number = {6}, year = {2008}, doi = {10.5802/aif.2406}, mrnumber = {2473629}, zbl = {1151.14009}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2406/} }
TY - JOUR AU - del Angel, Pedro Luis AU - Müller-Stach, Stefan TI - Differential Equations associated to Families of Algebraic Cycles JO - Annales de l'Institut Fourier PY - 2008 SP - 2075 EP - 2085 VL - 58 IS - 6 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2406/ DO - 10.5802/aif.2406 LA - en ID - AIF_2008__58_6_2075_0 ER -
%0 Journal Article %A del Angel, Pedro Luis %A Müller-Stach, Stefan %T Differential Equations associated to Families of Algebraic Cycles %J Annales de l'Institut Fourier %D 2008 %P 2075-2085 %V 58 %N 6 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2406/ %R 10.5802/aif.2406 %G en %F AIF_2008__58_6_2075_0
del Angel, Pedro Luis; Müller-Stach, Stefan. Differential Equations associated to Families of Algebraic Cycles. Annales de l'Institut Fourier, Tome 58 (2008) no. 6, pp. 2075-2085. doi : 10.5802/aif.2406. https://aif.centre-mersenne.org/articles/10.5802/aif.2406/
[1] –functions, Aspects of Mathematics, E13, Viehweg Verlag, 1989
[2] Higher Chow groups: Basic definitions and properties (Homepage Bloch)
[3] Algebraic cycles and the Beilinson conjectures, Contemporary Math., Volume 58 (1986), pp. 65-79 | MR | Zbl
[4] Symplectic manifolds and isomonodromic deformations, Adv. Math., Volume 163 (2001) no. 2, pp. 137-205 | DOI | MR | Zbl
[5] Period mappings and period domains, Cambridge Univ. Press, 2003 | MR | Zbl
[6] Sur les équations différentielles du troisième ordre et d’ordre supérieur dont l’intégrale générale a ses points critiques fixes, Acta Math., Volume 34 (1910), pp. 317-385 | DOI
[7] The transcendental part of the regulator map for on a family of K3 surfaces, Duke Journal, Volume 12 (2002) no. 3, pp. 581-598 | DOI | Zbl
[8] Équations différentielles à points réguliers singuliers, Springer, 1970 | MR | Zbl
[9] Über lineare homogene Differentialgleichungen zweiter Ordnung mit drei im Endlichen gelegenen wesentlich singulären Stellen, Math. Ann., Volume 63 (1907), pp. 301-321 | DOI | MR
[10] A theorem concerning the differential equations satisfied by normal functions associated to algebraic cycles, Amer. J. Math., Volume 101 (1979), pp. 94-131 | DOI | MR | Zbl
[11] The Abel-Jacobi map for higher Chow groups, Compositio Math., Volume 142 (2006), pp. 374-396 | DOI | MR | Zbl
[12] Mixed Hodge structures and singularities, Cambridge Univ. Press, 1998 | MR | Zbl
[13] Sixth Painlevé equation, universal elliptic curve and mirror of , Amer. Math. Soc. Translations, Volume 186 (1998) no. 2, pp. 131-151 | MR | Zbl
[14] D–branes and normal functions (2007) (Preprint hep-th/0709402)
[15] Constructing indecomposable motivic cohomology classes on algebraic surfaces, J. Algebraic Geom., Volume 6 (1997), pp. 513-543 | MR | Zbl
[16] Stockholm lectures, Hermann Paris, 1897
[17] Admissible normal functions, J. Algebraic Geom., Volume 5 (1996), pp. 235-276 | MR | Zbl
[18] Variation of mixed Hodge structure I, Invent. Math., Volume 80 (1985), pp. 489-542 | DOI | MR | Zbl
[19] Special values of Dirichlet series, monodromy, and the periods of automorphic forms, AMS, 1984 | MR | Zbl
[20] 100 years of the Painlevé equation, Sugaku, Volume 51 (1999) no. 4, pp. 395-420 | MR
Cité par Sources :