Codimension 3 Arithmetically Gorenstein Subschemes of projective N-space
[Sous-schémas arithmétiquement de Gorenstein de codimension 3 de l’espace projectif P N ]
Annales de l'Institut Fourier, Tome 58 (2008) no. 6, pp. 2037-2073.

Nous étudions le problème de savoir si tous les sous-schémas arithmétiquement de Cohen-Macaulay de N sont “glicci” dans le cas de plus petite dimension, c’est-à-dire le cas de sous-schémas de dimension zéro de 3 . Nous prouvons qu’il n’y a pas de liaisons ni de biliaisons de Gorenstein descendantes d’un ensemble d’au moins 56 points généraux de 3 . Pour démontrer ce théorème, nous établissons plusieurs résultats concernant les sous-schémas arithmétiquement de Gorenstein de 3 .

We study the lowest dimensional open case of the question whether every arithmetically Cohen–Macaulay subscheme of N is glicci, that is, whether every zero-scheme in 3 is glicci. We show that a general set of n56 points in 3 admits no strictly descending Gorenstein liaison or biliaison. In order to prove this theorem, we establish a number of important results about arithmetically Gorenstein zero-schemes in 3 .

DOI : 10.5802/aif.2405
Classification : 14C20, 14H50, 14M06, 14M07
Keywords: Gorenstein liaison, zero-dimensional schemes, $h$-vector
Mot clés : liaison de Gorenstein, schéma de dimension zéro, vecteur $h$

Hartshorne, Robin 1 ; Sabadini, Irene 2 ; Schlesinger, Enrico 2

1 University of California Department of Mathematics Berkeley, California 94720–3840 (USA)
2 Politecnico di Milano Dipartimento di Matematica Piazza Leonardo da Vinci 32 20133 Milano (Italia)
@article{AIF_2008__58_6_2037_0,
     author = {Hartshorne, Robin and Sabadini, Irene and Schlesinger, Enrico},
     title = {Codimension $3$ {Arithmetically} {Gorenstein} {Subschemes} of projective $N$-space},
     journal = {Annales de l'Institut Fourier},
     pages = {2037--2073},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {58},
     number = {6},
     year = {2008},
     doi = {10.5802/aif.2405},
     mrnumber = {2473628},
     zbl = {1155.14005},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2405/}
}
TY  - JOUR
AU  - Hartshorne, Robin
AU  - Sabadini, Irene
AU  - Schlesinger, Enrico
TI  - Codimension $3$ Arithmetically Gorenstein Subschemes of projective $N$-space
JO  - Annales de l'Institut Fourier
PY  - 2008
SP  - 2037
EP  - 2073
VL  - 58
IS  - 6
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2405/
DO  - 10.5802/aif.2405
LA  - en
ID  - AIF_2008__58_6_2037_0
ER  - 
%0 Journal Article
%A Hartshorne, Robin
%A Sabadini, Irene
%A Schlesinger, Enrico
%T Codimension $3$ Arithmetically Gorenstein Subschemes of projective $N$-space
%J Annales de l'Institut Fourier
%D 2008
%P 2037-2073
%V 58
%N 6
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.2405/
%R 10.5802/aif.2405
%G en
%F AIF_2008__58_6_2037_0
Hartshorne, Robin; Sabadini, Irene; Schlesinger, Enrico. Codimension $3$ Arithmetically Gorenstein Subschemes of projective $N$-space. Annales de l'Institut Fourier, Tome 58 (2008) no. 6, pp. 2037-2073. doi : 10.5802/aif.2405. https://aif.centre-mersenne.org/articles/10.5802/aif.2405/

[1] Boij, M. Gorenstein Artin algebras and points in projective space, Bull. London Math. Soc., Volume 31 (1997), pp. 11-16 | DOI | MR | Zbl

[2] Bruns, W.; Herzog, J. Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics, Volume 39, Cambridge University Press, 1993 | MR | Zbl

[3] Buchsbaum, D. A.; Eisenbud, D. Algebra structures for finite free resolutions, and some structure theorems for ideals of codimension 3, Amer. J. Math., Volume 99 (1977), pp. 447-485 | DOI | MR | Zbl

[4] Casanellas, M.; Drozd, E.; Hartshorne, R. Gorenstein liaison and ACM sheaves, J. Reine Angew. Math., Volume 584 (2005), pp. 149-171 | DOI | MR | Zbl

[5] Casanellas, M.; Hartshorne, R. Gorenstein biliaison and ACM sheaves, J. Algebra, Volume 278 (2004), pp. 314-341 | DOI | MR | Zbl

[6] Conca, A.; Valla, G. Hilbert function of powers of ideals of low codimension, Math. Z., Volume 230 (1999), pp. 753-784 | DOI | MR | Zbl

[7] Davis, E.; Geramita, A. V.; Orecchia, F. Gorenstein algebras and the Cayley-Bacharach Theorem, Proc. Amer. Math. Soc., Volume 93 (1985), pp. 593-597 | DOI | MR | Zbl

[8] De Negri, E.; Valla, G. The h-vector of a Gorenstein codimension three domain, Nagoya Math. J., Volume 138 (1995), pp. 113-140 | MR | Zbl

[9] Diesel, S. J. Irreducibility and dimension theorems for families of height 3 Gorenstein algebras, Pacific J. Math., Volume 172 (1996), pp. 365-397 | MR | Zbl

[10] Ellia, Ph. Exemples de courbes de 3 à fibré normal semi-stable, stable, Math. Ann., Volume 264 (1983), pp. 389-396 | DOI | MR | Zbl

[11] Ellia, Ph. Double structures and normal bundle of space curves, J. London Math. Soc., Volume 58 (1998), pp. 18-26 | DOI | MR | Zbl

[12] Ellingsrud, G. Sur le schéma de Hilbert des variétés de codimension 2 dans e à cône de Cohen–Macaulay, Ann. Sci. ENS, Volume 8 (1975), pp. 423-432 | Numdam | MR | Zbl

[13] Gruson, L.; Peskine, C. Genre des courbes de l’espace projectif, Springer LNM, Volume 687 (1977), pp. 31-59 | Zbl

[14] Hartshorne, R. Ample Subvarieties of Algebraic Varieties, Lectures Notes in Math., 156, Springer Verlag, Heidelberg, 1970 | MR | Zbl

[15] Hartshorne, R. On the classification of algebraic space curves. II, Algebraic geometry, Bowdoin, Volume 46 (1985), pp. 145-164 (Proc. Sympos. Pure Math., Part 1, Amer. Math. Soc., Providence, RI, 1987) | MR | Zbl

[16] Hartshorne, R. Generalized divisors on Gorenstein schemes, K-Theory, Volume 8 (1994), pp. 287-339 | DOI | MR | Zbl

[17] Hartshorne, R. Some examples of Gorenstein liaison in codimension three, Collect. Math., Volume 53 (2002), pp. 21-48 | MR | Zbl

[18] Hartshorne, R. Geometry of arithmetically Gorenstein curves in 4 , Collect. Math., Volume 55 (2004) no. 1, pp. 97-111 | MR | Zbl

[19] Hartshorne, R. Generalized divisors and biliaison, Illinois J. Math., Volume 51 (2007), pp. 83-98 | MR | Zbl

[20] Herzog, J.; Trung, N. V.; Valla, G. On hyperplane sections of reduced irreducible varieties of low codimension, J. Math. Kyoto Univ., Volume 34 (1994), pp. 47-72 | MR | Zbl

[21] Kleppe, J. O. Maximal Families of Gorenstein Algebras, Trans. Amer. Math. Soc., Volume 358 (2006), pp. 3133-3167 | DOI | MR | Zbl

[22] Kleppe, J. O. Maximal Families of Gorenstein Algebras, Trans. Amer. Math. Soc., Volume 358 (2006), pp. 3133-3167 | DOI | MR | Zbl

[23] Kleppe, J. O.; Migliore, J. C.; Miró–Roig, R. M.; Nagel, U.; Peterson, C. Gorenstein liaison, complete intersection liaison invariants and unobstructedness, Memoirs Amer. Math. Soc., 2001 no. 732 | Zbl

[24] Kleppe, J. O.; Miró–Roig, R. M. The dimension of the Hilbert scheme of Gorenstein codimension 3 subschemes, J. Pure Appl. Algebra, Volume 127 (1998), pp. 73-82 | DOI | MR | Zbl

[25] Kreuzer, M. On 0-dimensional complete intersections, Math. Ann., Volume 292 (1992), pp. 43-58 | DOI | MR | Zbl

[26] Macaulay, F. S. Some properties of enumeration in the theory of modular systems, Proc. London Math. Soc., Volume 26 (1927), pp. 531-555 | DOI

[27] Martin–Deschamps, M.; Perrin, D. Sur la classification des courbes gauches, Astérisque, 184–185, Société Mathématique de France, 1990 | MR | Zbl

[28] Migliore, J. C. Introduction to Liaison Theory and Deficiency Modules, Birkhäuser, Boston, 1998 | MR | Zbl

[29] Migliore, J. C.; Nagel, U. Monomial ideals and the Gorenstein liaison class of a complete intersection, Compositio Math., Volume 133 (2002), pp. 25-36 | DOI | MR | Zbl

[30] Nollet, S. Bounds on multisecant lines, Collect. Math., Volume 49 (1998), pp. 447-463 | MR | Zbl

[31] Perrin, D. Courbes passant par m points généraux de P 3 , Mémoires, 28–29, Soc. Math. France (N.S.), 1987 | Numdam | MR | Zbl

[32] Sernesi, E. Topics on families of projective schemes, Queen’s Papers in Pure and Applied Mathematics, Volume 73, Queen’s University, Kingston, 1986

[33] Stanley, R. P. Hilbert functions of graded algebras, Advances in Math., Volume 28 (1978), pp. 57-83 | DOI | MR | Zbl

[34] Walter, C. Algebraic cohomology methods for the normal bundle of algebraic space curves (1990) (Preprint)

[35] Watanabe, J. A note on Gorenstein rings of embedding codimension three, Nagoya Math. J., Volume 50 (1973), pp. 227-232 | MR | Zbl

Cité par Sources :