On the cohomology of vector fields on parallelizable manifolds
[Sur la cohomologie des champs vectoriels sur les variétés parallélisables]
Annales de l'Institut Fourier, Tome 58 (2008) no. 6, pp. 1937-1982.

Dans le présent article, nous déterminons, pour chaque variété parallélisable compacte lisse M, les espaces de seconde cohomologie de l’algèbre de Lie 𝒱 M des champs vectoriels lisses sur M à valeurs dans le module Ω ¯ M p =Ω M p /dΩ M p-1 . Le cas p=1 est d’un intérêt particulier puisque l’algèbre de jauge des fonctions sur M à valeurs dans une algèbre de Lie simple de dimension finie possède l’extension centrale universelle avec le centre Ω ¯ M 1 , généralisant les algèbres de Kac-Moody affines. L’espace H 2 (𝒱 M ,Ω ¯ M 1 ) classifie des torsions du produit semi-direct de 𝒱 M avec l’extension centrale universelle d’une algèbre de Lie de jauge.

In the present paper we determine for each parallelizable smooth compact manifold M the second cohomology spaces of the Lie algebra 𝒱 M of smooth vector fields on M with values in the module Ω ¯ M p =Ω M p /dΩ M p-1 . The case of p=1 is of particular interest since the gauge algebra of functions on M with values in a finite-dimensional simple Lie algebra has the universal central extension with center Ω ¯ M 1 , generalizing affine Kac-Moody algebras. The second cohomology H 2 (𝒱 M ,Ω ¯ M 1 ) classifies twists of the semidirect product of 𝒱 M with the universal central extension of a gauge Lie algebra.

DOI : 10.5802/aif.2402
Classification : 17B56, 17B65, 17B68
Keywords: Lie algebra of vector fields, Lie algebra cohomology, Gelfand-Fuks cohomology, extended affine Lie algebra
Mot clés : algèbre de Lie des champs vectoriels, cohomologie de l’algèbre de Lie, cohomologie de Gelfand-Fuks, algèbre de Lie affine étendu

Billig, Yuly 1 ; Neeb, Karl-Hermann 2

1 Carleton University School of Mathematics and Statistics 1125 Colonel By Drive Ottawa, Ontario, K1S 5B6 (Canada)
2 Technische Universität Darmstadt Schlossgartenstrasse 7 64289 Darmstadt (Deutschland)
@article{AIF_2008__58_6_1937_0,
     author = {Billig, Yuly and Neeb, Karl-Hermann},
     title = {On the cohomology of vector fields on parallelizable manifolds},
     journal = {Annales de l'Institut Fourier},
     pages = {1937--1982},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {58},
     number = {6},
     year = {2008},
     doi = {10.5802/aif.2402},
     mrnumber = {2473625},
     zbl = {1157.17007},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2402/}
}
TY  - JOUR
AU  - Billig, Yuly
AU  - Neeb, Karl-Hermann
TI  - On the cohomology of vector fields on parallelizable manifolds
JO  - Annales de l'Institut Fourier
PY  - 2008
SP  - 1937
EP  - 1982
VL  - 58
IS  - 6
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2402/
DO  - 10.5802/aif.2402
LA  - en
ID  - AIF_2008__58_6_1937_0
ER  - 
%0 Journal Article
%A Billig, Yuly
%A Neeb, Karl-Hermann
%T On the cohomology of vector fields on parallelizable manifolds
%J Annales de l'Institut Fourier
%D 2008
%P 1937-1982
%V 58
%N 6
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.2402/
%R 10.5802/aif.2402
%G en
%F AIF_2008__58_6_1937_0
Billig, Yuly; Neeb, Karl-Hermann. On the cohomology of vector fields on parallelizable manifolds. Annales de l'Institut Fourier, Tome 58 (2008) no. 6, pp. 1937-1982. doi : 10.5802/aif.2402. https://aif.centre-mersenne.org/articles/10.5802/aif.2402/

[1] Abraham, R.; Marsden, J. E.; Ratiu, T. Manifolds, Tensor Analysis, and Applications, Addison-Wesley, 1983 | MR | Zbl

[2] Allison, B.; Berman, S.; Faulkner, J.; Pianzola, A. Realizations of graded-simple algebras as loop algebras (math.RA/0511723)

[3] Bahturin, Y. A.; Mikhalev, A. A.; Petrogradsky, V. M.; Zaicev, M. V. Infinite-dimensional Lie superalgebras, Walter de Gruyter & Co, 1992 | MR | Zbl

[4] Beggs, E. J. The de Rham complex on infinite dimensional manifolds, Quart. J. Math. Oxford, Volume 38 (1987) no. 2, pp. 131-154 | DOI | MR | Zbl

[5] Benkart, G.; Neher, E. The centroid of extended affine and root graded Lie algebras, J. Pure Appl. Algebra, Volume 205 (2006) no. 1, pp. 117-145 | DOI | MR

[6] Berman, S.; Billig, Y. Irreducible representations for toroidal Lie algebras, J. Algebra, Volume 221 (1999), pp. 188-231 | DOI | MR | Zbl

[7] Bernshtein, I. N.; Rozenfel’d, B. I. Homogeneous spaces of infinitedimensional Lie algebras and characteristic classes of foliations, Russ. Math. Surveys, Volume 28 (1973) no. 4, pp. 107-142 | DOI | Zbl

[8] Billig, Y. A category of modules for the full toroidal Lie algebra, Int. Math. Res. Not., 2006 (Art. ID 68395, 46 pp.) | MR

[9] Chevalley, C.; Eilenberg, S. Cohomology theory of Lie groups and Lie algebras, Transactions of the Amer. Math. Soc., Volume 63 (1948), pp. 85-124 | DOI | MR | Zbl

[10] Cohen, F. R.; Taylor, L. R.; Springer Computations of Gelfand-Fuks cohomology, the cohomology of function spaces, and the cohomology of configuration spaces, Geometric applications of homotopy theory I (Lectures Notes Math.), Volume 657 (1978), pp. 106-173 | MR | Zbl

[11] de Wilde, M.; Lecomte, P. B. A. Cohomology of the Lie algebra of smooth vector fields of a manifold, associated to the Lie derivative of smooth forms, J. Math. Pures et Appl., Volume 62 (1983), pp. 197-214 | MR | Zbl

[12] Eswara Rao, S.; Moody, R. V. Vertex representations for n-toroidal Lie algebras and a generalization of the Virasoro algebra, Comm. Math. Phys., Volume 159 (1994), pp. 239-264 | DOI | MR | Zbl

[13] Feigin, B. L.; Fuchs, D. B.; Onishchik, A. L.; Vinberg, E. B. Cohomologies of Lie Groups and Lie Algebras, Lie Groups and Lie Algebras II (Encyclop. Math. Sci.), Volume 21 (2001) | Zbl

[14] Flato, M.; Lichnerowicz, A. Cohomologie des représentations définies par la dérivation de Lie et à valeurs dans les formes, de l’algèbre de Lie des champs de vecteurs d’une variété différentiable. Premiers espaces de cohomologie. Applications, C. R. Acad. Sci. Paris, Sér. A-B, Volume 291 (1980) no. 4, p. A331-A335 | Zbl

[15] Fuks, D. B. Cohomology of Infinite-Dimensional Lie Algebras, Consultants Bureau, New York, London, 1986 | MR | Zbl

[16] Gelfand, I. M.; Fuks, D. B. Cohomology of the Lie algebra of formal vector fields, Izv. Akad. Nauk SSSR (1970) no. 34, pp. 322-337 | MR | Zbl

[17] Gelfand, I. M.; Fuks, D. B. Cohomology of the Lie algebra of vector fields with nontrivial coefficients, Func. Anal. and its Appl., Volume 4 (1970), pp. 181-192 | DOI | MR | Zbl

[18] Godbillon, C. Cohomologies d’algèbres de Lie de champs de vecteurs formels, Séminaire Bourbaki (1972/1973), Exp. No. 421 (Lecture Notes in Math.), Volume 383 (1974), pp. 69-87 | Numdam | Zbl

[19] Haefliger, A. Sur la cohomologie de l’algèbre de Lie des champs de vecteurs, Ann. Sci. Ec. Norm. Sup., 4e série, Volume 9 (1976), pp. 503-532 | Numdam | Zbl

[20] Hochschild, G.; Serre, J.-P. Cohomology of Lie algebras, Annals of Math., Volume 57 (1953) no. 3, pp. 591-603 | DOI | MR | Zbl

[21] Kassel, C. Kähler differentials and coverings of complex simple Lie algebras extended over a commutative ring, J. Pure Applied Algebra, Volume 34 (1984), pp. 265-275 | DOI | MR | Zbl

[22] Koszul, J.-L. Homologie des complexes de formes différentielles d’ordre supérieur, Collection of articles dedicated to Henri Cartan on the occasion of his 70th birthday, I, Volume 7 (1974), pp. 139-153 | Numdam | Zbl

[23] Larsson, T. A. Lowest-energy representations of non-centrally extended diffeomorphism algebras, Comm. Math. Phys., Volume 201 (1999), pp. 461-470 | DOI | MR | Zbl

[24] Maier, P.; Strasburger et al., A. Central extensions of topological current algebras, Geometry and Analysis on Finite- and Infinite-Dimensional Lie Groups, Volume 55 (2002), pp. 61-76 | MR | Zbl

[25] Neeb, K.-H. Abelian extensions of infinite-dimensional Lie groups, Travaux mathématiques, Volume 15 (2004), pp. 69-194 | MR | Zbl

[26] Neeb, K.-H. Lie algebra extensions and higher order cocycles, J. Geom. Sym. Phys., Volume 5 (2006), pp. 48-74 | MR | Zbl

[27] Neeb, K.-H. Non-abelian extensions of topological Lie algebras, Communications in Algebra, Volume 34 (2006), pp. 991-1041 | DOI | MR

[28] Neher, E. Extended affine Lie algebras, C. R. Math. Acad. Sci. Soc. R. Can., Volume 26 (2004) no. 3, pp. 90-96 | MR | Zbl

[29] Pressley, A.; Segal, G. Loop Groups, Oxford University Press, Oxford, 1986 | MR | Zbl

[30] Rosenfeld, B. I. Cohomology of certain infinite-dimensional Lie algebras, Funct. Anal. Appl., Volume 13 (1971), pp. 340-342 | Zbl

[31] Tsujishita, T. On the continuous cohomology of the Lie algebra of vector fields, Proc. Jap. Math. Soc., Volume 53:A (1977), pp. 134-138 | MR | Zbl

[32] Tsujishita, T. Continuous cohomology of the Lie algebra of vector fields, Memoirs of the Amer. Math. Soc., Volume 253 (1981) no. 34, pp. 154p. | MR | Zbl

Cité par Sources :