Almost regular quaternary quadratic forms
Annales de l'Institut Fourier, Volume 58 (2008) no. 5, pp. 1499-1549.

We investigate the almost regular positive definite integral quaternary quadratic forms. In particular, we show that every such form is p-anisotropic for at most one prime number p. Moreover, for a prime p there is an almost regular p-anisotropic quaternary quadratic form if and only if p37. We also study the genera containing some almost regular p-anisotropic quaternary form. We show several finiteness results concerning the families of these genera and give effective criteria for almost regularity.

Nous étudions les formes quadratiques entières quaternaires (c’est-à-dire à quatre variables) qui sont définies positives et presque régulières. Nous montrons en particulier qu’une telle forme n’est p-anisotrope que pour au plus un nombre premier p. De plus, pour un nombre premier p, il existe une forme quadratique quaternaire presque régulière p-anisotrope si et seulement si p37. Nous étudions également les genres contenant une forme quadratique presque régulière p-anisotrope. Nous démontrons plusieurs résultats de finitude concernant les familles de ces genres et établissons des critères effectifs presque réguliers.

DOI: 10.5802/aif.2391
Classification: 11E12, 11E20
Keywords: Quadratic equations, almost regular quadratic forms
Mot clés : équations quadratiques, formes quadratiques presque régulières

Bochnak, Jacek 1; Oh, Byeong-Kweon 2

1 Vrije Universiteit Department of Mathematics 1081 HV Amsterdam De Boelelaan 1081 A (The Netherlands)
2 Sejong University Department of Applied Mathematics Seoul, 143-747 (Korea)
@article{AIF_2008__58_5_1499_0,
     author = {Bochnak, Jacek and Oh, Byeong-Kweon},
     title = {Almost regular quaternary quadratic forms},
     journal = {Annales de l'Institut Fourier},
     pages = {1499--1549},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {58},
     number = {5},
     year = {2008},
     doi = {10.5802/aif.2391},
     mrnumber = {2445826},
     zbl = {1162.11020},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2391/}
}
TY  - JOUR
AU  - Bochnak, Jacek
AU  - Oh, Byeong-Kweon
TI  - Almost regular quaternary quadratic forms
JO  - Annales de l'Institut Fourier
PY  - 2008
SP  - 1499
EP  - 1549
VL  - 58
IS  - 5
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2391/
DO  - 10.5802/aif.2391
LA  - en
ID  - AIF_2008__58_5_1499_0
ER  - 
%0 Journal Article
%A Bochnak, Jacek
%A Oh, Byeong-Kweon
%T Almost regular quaternary quadratic forms
%J Annales de l'Institut Fourier
%D 2008
%P 1499-1549
%V 58
%N 5
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.2391/
%R 10.5802/aif.2391
%G en
%F AIF_2008__58_5_1499_0
Bochnak, Jacek; Oh, Byeong-Kweon. Almost regular quaternary quadratic forms. Annales de l'Institut Fourier, Volume 58 (2008) no. 5, pp. 1499-1549. doi : 10.5802/aif.2391. https://aif.centre-mersenne.org/articles/10.5802/aif.2391/

[1] Andrianov, A. N. Quadratic Forms and Hecke operators, Springer-Verlag, Berlin, 1987 | MR | Zbl

[2] Bhargava, M. On the Conway-Schneeberger fifteen theorem, in ‘Quadratic Forms and Their Applications’ (Dublin), pp.27–37, Contemporary Math., 272, Amer. Math. Soc., Providence, RI, 2000 | Zbl

[3] Bhargava, M.; Hanke, J. Universal quadratic forms and the 290 theorem (to appear in Invent. Math.)

[4] Bochnak, J.; Oh, B.-K. Almost universal quadratic forms: an effective solution of a problem of Ramanujan (to appear in Duke Math.Journal)

[5] Cassels, J. W. S. Rational Quadratic Forms, Academic Press, London, 1978 | MR | Zbl

[6] Chan, W. K.; Earnest, A.; Oh, B.-K. Regularity properties of positive definite integral quadratic forms. Algebraic and arithmetic theory of quadratic forms, pp.59–71, Contemp. Math., 344, Amer. Math. Soc., Providence, RI, 2004 | MR

[7] Chan, W. K.; Oh, B.-K. Finiteness theorems for positive definite n-regular quadratic forms, Trans. Amer. Math. Soc., Volume 355 (2003), pp. 2385-2396 | DOI | MR | Zbl

[8] Chan, W. K.; Oh, B.-K. Positive ternary quadratic forms with finitely many exceptions, Proc. Amer. Math. Soc., Volume 132 (2004), pp. 1567-1573 | DOI | MR | Zbl

[9] Gerstein, L. The growth of class numbers of quadratic forms, Amer. J. Math., Volume 94 (1972), pp. 221-236 | DOI | MR | Zbl

[10] Hanke, J. Universal quadratic forms and the 290 theorem (http://www.math.duke.edu/~jonhanke/290/Universal-290.html)

[11] Jagy, W. C.; Kaplansky, I.; Schiemann, A. There are 913 regular ternary forms, Mathematika, Volume 44 (1997), pp. 332-341 | DOI | MR | Zbl

[12] Kloosterman, H. D. On the representation of numbers in the form ax 2 +by 2 +cz 2 +dt 2 , Acta Math., Volume 49 (1926), pp. 407-464 | DOI

[13] Martinet, J. Perfect Lattices in Euclidean Spaces, Springer-Verlag, Berlin, 2003 | MR | Zbl

[14] Mimura, Y. Universal quadratic forms (http://www.kobepharma-u.ac.jp/~math/notes/note05.html)

[15] O’Meara, O. T. Introduction to Quadratic Forms, Springer-Verlag, 1963 | Zbl

[16] Pall, G.; Ross, A. An extension of a problem of Kloosterman, Amer. J. Math., Volume 68 (1946), pp. 59-65 | DOI | MR | Zbl

[17] Serre, J.-P. A Course in Arithmetic, Springer-Verlag, 1973 | MR | Zbl

[18] Tartakowsky, W. Die Gesamtheit der Zahlen, die durch eine positive quadratische Form F(x 1 ,,x s )(s4) darstellbar sind, Isv. Akad. Nauk SSSR, Volume 7 (1929), p. 111-122, 165-195

[19] Watson, G. L. Some problems in the theory of numbers, University of London (1953) (Ph. D. Thesis)

[20] Watson, G. L. Transformations of a quadratic form which do not increase the class-number, Proc. London Math. Soc. (3), Volume 12 (1962), pp. 577-587 | DOI | MR | Zbl

Cited by Sources: