We investigate the almost regular positive definite integral quaternary quadratic forms. In particular, we show that every such form is -anisotropic for at most one prime number . Moreover, for a prime there is an almost regular -anisotropic quaternary quadratic form if and only if . We also study the genera containing some almost regular -anisotropic quaternary form. We show several finiteness results concerning the families of these genera and give effective criteria for almost regularity.
Nous étudions les formes quadratiques entières quaternaires (c’est-à-dire à quatre variables) qui sont définies positives et presque régulières. Nous montrons en particulier qu’une telle forme n’est -anisotrope que pour au plus un nombre premier . De plus, pour un nombre premier , il existe une forme quadratique quaternaire presque régulière -anisotrope si et seulement si . Nous étudions également les genres contenant une forme quadratique presque régulière -anisotrope. Nous démontrons plusieurs résultats de finitude concernant les familles de ces genres et établissons des critères effectifs presque réguliers.
Keywords: Quadratic equations, almost regular quadratic forms
Mot clés : équations quadratiques, formes quadratiques presque régulières
Bochnak, Jacek 1; Oh, Byeong-Kweon 2
@article{AIF_2008__58_5_1499_0, author = {Bochnak, Jacek and Oh, Byeong-Kweon}, title = {Almost regular quaternary quadratic forms}, journal = {Annales de l'Institut Fourier}, pages = {1499--1549}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {58}, number = {5}, year = {2008}, doi = {10.5802/aif.2391}, mrnumber = {2445826}, zbl = {1162.11020}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2391/} }
TY - JOUR AU - Bochnak, Jacek AU - Oh, Byeong-Kweon TI - Almost regular quaternary quadratic forms JO - Annales de l'Institut Fourier PY - 2008 SP - 1499 EP - 1549 VL - 58 IS - 5 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2391/ DO - 10.5802/aif.2391 LA - en ID - AIF_2008__58_5_1499_0 ER -
%0 Journal Article %A Bochnak, Jacek %A Oh, Byeong-Kweon %T Almost regular quaternary quadratic forms %J Annales de l'Institut Fourier %D 2008 %P 1499-1549 %V 58 %N 5 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2391/ %R 10.5802/aif.2391 %G en %F AIF_2008__58_5_1499_0
Bochnak, Jacek; Oh, Byeong-Kweon. Almost regular quaternary quadratic forms. Annales de l'Institut Fourier, Volume 58 (2008) no. 5, pp. 1499-1549. doi : 10.5802/aif.2391. https://aif.centre-mersenne.org/articles/10.5802/aif.2391/
[1] Quadratic Forms and Hecke operators, Springer-Verlag, Berlin, 1987 | MR | Zbl
[2] On the Conway-Schneeberger fifteen theorem, in ‘Quadratic Forms and Their Applications’ (Dublin), pp.27–37, Contemporary Math., 272, Amer. Math. Soc., Providence, RI, 2000 | Zbl
[3] Universal quadratic forms and the theorem (to appear in Invent. Math.)
[4] Almost universal quadratic forms: an effective solution of a problem of Ramanujan (to appear in Duke Math.Journal)
[5] Rational Quadratic Forms, Academic Press, London, 1978 | MR | Zbl
[6] Regularity properties of positive definite integral quadratic forms. Algebraic and arithmetic theory of quadratic forms, pp.59–71, Contemp. Math., 344, Amer. Math. Soc., Providence, RI, 2004 | MR
[7] Finiteness theorems for positive definite -regular quadratic forms, Trans. Amer. Math. Soc., Volume 355 (2003), pp. 2385-2396 | DOI | MR | Zbl
[8] Positive ternary quadratic forms with finitely many exceptions, Proc. Amer. Math. Soc., Volume 132 (2004), pp. 1567-1573 | DOI | MR | Zbl
[9] The growth of class numbers of quadratic forms, Amer. J. Math., Volume 94 (1972), pp. 221-236 | DOI | MR | Zbl
[10] Universal quadratic forms and the theorem (http://www.math.duke.edu/~jonhanke/290/Universal-290.html)
[11] There are 913 regular ternary forms, Mathematika, Volume 44 (1997), pp. 332-341 | DOI | MR | Zbl
[12] On the representation of numbers in the form , Acta Math., Volume 49 (1926), pp. 407-464 | DOI
[13] Perfect Lattices in Euclidean Spaces, Springer-Verlag, Berlin, 2003 | MR | Zbl
[14] Universal quadratic forms (http://www.kobepharma-u.ac.jp/~math/notes/note05.html)
[15] Introduction to Quadratic Forms, Springer-Verlag, 1963 | Zbl
[16] An extension of a problem of Kloosterman, Amer. J. Math., Volume 68 (1946), pp. 59-65 | DOI | MR | Zbl
[17] A Course in Arithmetic, Springer-Verlag, 1973 | MR | Zbl
[18] Die Gesamtheit der Zahlen, die durch eine positive quadratische Form darstellbar sind, Isv. Akad. Nauk SSSR, Volume 7 (1929), p. 111-122, 165-195
[19] Some problems in the theory of numbers, University of London (1953) (Ph. D. Thesis)
[20] Transformations of a quadratic form which do not increase the class-number, Proc. London Math. Soc. (3), Volume 12 (1962), pp. 577-587 | DOI | MR | Zbl
Cited by Sources: