Almost regular quaternary quadratic forms
[Formes quadratiques quaternaires presque régulières]
Annales de l'Institut Fourier, Tome 58 (2008) no. 5, pp. 1499-1549.

Nous étudions les formes quadratiques entières quaternaires (c’est-à-dire à quatre variables) qui sont définies positives et presque régulières. Nous montrons en particulier qu’une telle forme n’est p-anisotrope que pour au plus un nombre premier p. De plus, pour un nombre premier p, il existe une forme quadratique quaternaire presque régulière p-anisotrope si et seulement si p37. Nous étudions également les genres contenant une forme quadratique presque régulière p-anisotrope. Nous démontrons plusieurs résultats de finitude concernant les familles de ces genres et établissons des critères effectifs presque réguliers.

We investigate the almost regular positive definite integral quaternary quadratic forms. In particular, we show that every such form is p-anisotropic for at most one prime number p. Moreover, for a prime p there is an almost regular p-anisotropic quaternary quadratic form if and only if p37. We also study the genera containing some almost regular p-anisotropic quaternary form. We show several finiteness results concerning the families of these genera and give effective criteria for almost regularity.

DOI : 10.5802/aif.2391
Classification : 11E12, 11E20
Keywords: Quadratic equations, almost regular quadratic forms
Mot clés : équations quadratiques, formes quadratiques presque régulières

Bochnak, Jacek 1 ; Oh, Byeong-Kweon 2

1 Vrije Universiteit Department of Mathematics 1081 HV Amsterdam De Boelelaan 1081 A (The Netherlands)
2 Sejong University Department of Applied Mathematics Seoul, 143-747 (Korea)
@article{AIF_2008__58_5_1499_0,
     author = {Bochnak, Jacek and Oh, Byeong-Kweon},
     title = {Almost regular quaternary quadratic forms},
     journal = {Annales de l'Institut Fourier},
     pages = {1499--1549},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {58},
     number = {5},
     year = {2008},
     doi = {10.5802/aif.2391},
     mrnumber = {2445826},
     zbl = {1162.11020},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2391/}
}
TY  - JOUR
AU  - Bochnak, Jacek
AU  - Oh, Byeong-Kweon
TI  - Almost regular quaternary quadratic forms
JO  - Annales de l'Institut Fourier
PY  - 2008
SP  - 1499
EP  - 1549
VL  - 58
IS  - 5
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2391/
DO  - 10.5802/aif.2391
LA  - en
ID  - AIF_2008__58_5_1499_0
ER  - 
%0 Journal Article
%A Bochnak, Jacek
%A Oh, Byeong-Kweon
%T Almost regular quaternary quadratic forms
%J Annales de l'Institut Fourier
%D 2008
%P 1499-1549
%V 58
%N 5
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.2391/
%R 10.5802/aif.2391
%G en
%F AIF_2008__58_5_1499_0
Bochnak, Jacek; Oh, Byeong-Kweon. Almost regular quaternary quadratic forms. Annales de l'Institut Fourier, Tome 58 (2008) no. 5, pp. 1499-1549. doi : 10.5802/aif.2391. https://aif.centre-mersenne.org/articles/10.5802/aif.2391/

[1] Andrianov, A. N. Quadratic Forms and Hecke operators, Springer-Verlag, Berlin, 1987 | MR | Zbl

[2] Bhargava, M. On the Conway-Schneeberger fifteen theorem, in ‘Quadratic Forms and Their Applications’ (Dublin), pp.27–37, Contemporary Math., 272, Amer. Math. Soc., Providence, RI, 2000 | Zbl

[3] Bhargava, M.; Hanke, J. Universal quadratic forms and the 290 theorem (to appear in Invent. Math.)

[4] Bochnak, J.; Oh, B.-K. Almost universal quadratic forms: an effective solution of a problem of Ramanujan (to appear in Duke Math.Journal)

[5] Cassels, J. W. S. Rational Quadratic Forms, Academic Press, London, 1978 | MR | Zbl

[6] Chan, W. K.; Earnest, A.; Oh, B.-K. Regularity properties of positive definite integral quadratic forms. Algebraic and arithmetic theory of quadratic forms, pp.59–71, Contemp. Math., 344, Amer. Math. Soc., Providence, RI, 2004 | MR

[7] Chan, W. K.; Oh, B.-K. Finiteness theorems for positive definite n-regular quadratic forms, Trans. Amer. Math. Soc., Volume 355 (2003), pp. 2385-2396 | DOI | MR | Zbl

[8] Chan, W. K.; Oh, B.-K. Positive ternary quadratic forms with finitely many exceptions, Proc. Amer. Math. Soc., Volume 132 (2004), pp. 1567-1573 | DOI | MR | Zbl

[9] Gerstein, L. The growth of class numbers of quadratic forms, Amer. J. Math., Volume 94 (1972), pp. 221-236 | DOI | MR | Zbl

[10] Hanke, J. Universal quadratic forms and the 290 theorem (http://www.math.duke.edu/~jonhanke/290/Universal-290.html)

[11] Jagy, W. C.; Kaplansky, I.; Schiemann, A. There are 913 regular ternary forms, Mathematika, Volume 44 (1997), pp. 332-341 | DOI | MR | Zbl

[12] Kloosterman, H. D. On the representation of numbers in the form ax 2 +by 2 +cz 2 +dt 2 , Acta Math., Volume 49 (1926), pp. 407-464 | DOI

[13] Martinet, J. Perfect Lattices in Euclidean Spaces, Springer-Verlag, Berlin, 2003 | MR | Zbl

[14] Mimura, Y. Universal quadratic forms (http://www.kobepharma-u.ac.jp/~math/notes/note05.html)

[15] O’Meara, O. T. Introduction to Quadratic Forms, Springer-Verlag, 1963 | Zbl

[16] Pall, G.; Ross, A. An extension of a problem of Kloosterman, Amer. J. Math., Volume 68 (1946), pp. 59-65 | DOI | MR | Zbl

[17] Serre, J.-P. A Course in Arithmetic, Springer-Verlag, 1973 | MR | Zbl

[18] Tartakowsky, W. Die Gesamtheit der Zahlen, die durch eine positive quadratische Form F(x 1 ,,x s )(s4) darstellbar sind, Isv. Akad. Nauk SSSR, Volume 7 (1929), p. 111-122, 165-195

[19] Watson, G. L. Some problems in the theory of numbers, University of London (1953) (Ph. D. Thesis)

[20] Watson, G. L. Transformations of a quadratic form which do not increase the class-number, Proc. London Math. Soc. (3), Volume 12 (1962), pp. 577-587 | DOI | MR | Zbl

Cité par Sources :