Non-abelian congruences between L-values of elliptic curves
[Congruences non-abeliennes entres les valeurs L des courbes elliptiques]
Annales de l'Institut Fourier, Tome 58 (2008) no. 3, pp. 1023-1055.

Soit E une courbe elliptique définie sur . Nous démontrons des versions faibles des congruences K 1 de Kato, pour les valeurs spéciales L1 , E / ( μ p n , Δ p n ). Plus précisément, nous vérifions que les congruences sont vraies modulo p n+1 , plutôt que modulo p 2n . Bien que ça ne suffise pas pour établir l’existence d’une fonction L p-adique qui vit dans K 1 p [[ Gal ((μ p ,Δ p )/)]], elles fournissent beaucoup d’indices de l’existence de cet objet analytique. Par exemple, si n=1 les congruences trouvées numériquement par Tim et Vladimir Dokchitser sont vraies.

Let E be a semistable elliptic curve over . We prove weak forms of Kato’s K 1 -congruences for the special values L1 , E / ( μ p n , Δ p n ). More precisely, we show that they are true modulo p n+1 , rather than modulo p 2n . Whilst not quite enough to establish that there is a non-abelian L-function living in K 1 p [[ Gal ((μ p ,Δ p )/)]], they do provide strong evidence towards the existence of such an analytic object. For example, if n=1 these verify the numerical congruences found by Tim and Vladimir Dokchitser.

DOI : 10.5802/aif.2377
Classification : 11R23, 11G40, 19B28
Keywords: Iwasawa theory, modular forms, $p$-adic $L$-functions
Mot clés : théorie d’Iwasawa, formes modulaires, fonctions $L$ $p$-adiques

Delbourgo, Daniel 1 ; Ward, Tom 2

1 Monash University School of Mathematical Sciences Victoria 3800 (Australia)
2 University of Nottingham School of Mathematical Sciences Nottingham NG7 2RD (United Kingdom)
@article{AIF_2008__58_3_1023_0,
     author = {Delbourgo, Daniel and Ward, Tom},
     title = {Non-abelian congruences between $L$-values of elliptic curves},
     journal = {Annales de l'Institut Fourier},
     pages = {1023--1055},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {58},
     number = {3},
     year = {2008},
     doi = {10.5802/aif.2377},
     mrnumber = {2427518},
     zbl = {1165.11077},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2377/}
}
TY  - JOUR
AU  - Delbourgo, Daniel
AU  - Ward, Tom
TI  - Non-abelian congruences between $L$-values of elliptic curves
JO  - Annales de l'Institut Fourier
PY  - 2008
SP  - 1023
EP  - 1055
VL  - 58
IS  - 3
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2377/
DO  - 10.5802/aif.2377
LA  - en
ID  - AIF_2008__58_3_1023_0
ER  - 
%0 Journal Article
%A Delbourgo, Daniel
%A Ward, Tom
%T Non-abelian congruences between $L$-values of elliptic curves
%J Annales de l'Institut Fourier
%D 2008
%P 1023-1055
%V 58
%N 3
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.2377/
%R 10.5802/aif.2377
%G en
%F AIF_2008__58_3_1023_0
Delbourgo, Daniel; Ward, Tom. Non-abelian congruences between $L$-values of elliptic curves. Annales de l'Institut Fourier, Tome 58 (2008) no. 3, pp. 1023-1055. doi : 10.5802/aif.2377. https://aif.centre-mersenne.org/articles/10.5802/aif.2377/

[1] Bouganis, Thanasis L -functions of elliptic curves and false Tate curve extensions, University of Cambridge (2005) (Ph. D. Thesis)

[2] Bouganis, Thanasis; Dokchitser, Vladimir Algebraicity of L-values for elliptic curves in a false Tate curve tower, Math. Proc. Cambridge Philos. Soc., Volume 142 (2007) no. 2, pp. 193-204 | DOI | MR

[3] Coates, John; Fukaya, Takako; Kato, Kazuya; Sujatha, Ramdorai; Venjakob, Otmar The GL 2 main conjecture for elliptic curves without complex multiplication, Publ. Math. Inst. Hautes Études Sci. (2005) no. 101, pp. 163-208 | Numdam | MR | Zbl

[4] Doi, Koji; Hida, Haruzo; Ishii, Hidenori Discriminant of Hecke fields and twisted adjoint L-values for GL (2), Invent. Math., Volume 134 (1998) no. 3, pp. 547-577 | DOI | MR | Zbl

[5] Dokchitser, T.; Dokchitser, V. Computations in non-commutative Iwasawa theory, Proc. Lond. Math. Soc. (3), Volume 94 (2007) no. 1, pp. 211-272 (With an appendix by J. Coates and R. Sujatha) | DOI | MR

[6] Dokchitser, Vladimir Root numbers of non-abelian twists of elliptic curves, Proc. London Math. Soc. (3), Volume 91 (2005) no. 2, pp. 300-324 (With an appendix by Tom Fisher) | DOI | MR | Zbl

[7] Dünger, Volker p-adic interpolation of convolutions of Hilbert modular forms, Ann. Inst. Fourier (Grenoble), Volume 47 (1997) no. 2, pp. 365-428 | DOI | Numdam | MR | Zbl

[8] Haran, Shai p-adic L-functions for modular forms, Compositio Math., Volume 62 (1987) no. 1, pp. 31-46 | Numdam | MR | Zbl

[9] Kato, Kazuya K 1 of some non-commutative completed group rings, K-Theory, Volume 34 (2005) no. 2, pp. 99-140 | DOI | MR | Zbl

[10] Panchishkin, Alexey A. Non-Archimedean L -functions of Siegel and Hilbert modular forms, Lecture Notes in Mathematics, 1471, Springer-Verlag, Berlin, 1991 | MR | Zbl

[11] Serre, Jean-Pierre Sur les représentations modulaires de degré 2 de Gal (Q ¯/Q), Duke Math. J., Volume 54 (1987) no. 1, pp. 179-230 | DOI | MR | Zbl

[12] Shimura, Goro Corrections to: “The special values of the zeta functions associated with Hilbert modular forms” [Duke Math. J. 45 (1978), no. 3, 637–679, Duke Math. J., Volume 48 (1981) no. 3, pp. 697 | DOI | Zbl

[13] Stevens, Glenn Stickelberger elements and modular parametrizations of elliptic curves, Invent. Math., Volume 98 (1989) no. 1, pp. 75-106 | DOI | EuDML | MR | Zbl

[14] Tate, J. Number theoretic background, Automorphic forms, representations and L -functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2 (Proc. Sympos. Pure Math., XXXIII), Amer. Math. Soc., Providence, R.I., 1979, pp. 3-26 | MR | Zbl

Cité par Sources :