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NON-ABELIAN CONGRUENCES BETWEEN L-VALUES
OF ELLIPTIC CURVES

by Daniel DELBOURGO & Tom WARD (*)

Abstract. — Let E be a semistable elliptic curve over Q. We prove weak forms
of Kato’s K1-congruences for the special values L

(
1, E/Q(µpn ,

pn√
∆)
)
. More pre-

cisely, we show that they are true modulo pn+1, rather than modulo p2n. Whilst
not quite enough to establish that there is a non-abelian L-function living in
K1

(
Zp[[Gal(Q(µp∞ ,

p∞√
∆)/Q)]]

)
, they do provide strong evidence towards the ex-

istence of such an analytic object. For example, if n = 1 these verify the numerical
congruences found by Tim and Vladimir Dokchitser.

Résumé. — Soit E une courbe elliptique définie sur Q. Nous démontrons des
versions faibles des congruences K1 de Kato, pour les valeurs spéciales
L
(
1, E/Q(µpn ,

pn√
∆)
)
. Plus précisément, nous vérifions que les congruences sont

vraies modulo pn+1, plutôt que modulo p2n. Bien que ça ne suffise pas pour établir
l’existence d’une fonction L p-adique qui vit dans K1

(
Zp[[Gal(Q(µp∞ ,

p∞√
∆)/Q)]]

)
,

elles fournissent beaucoup d’indices de l’existence de cet objet analytique. Par
exemple, si n = 1 les congruences trouvées numériquement par Tim et Vladimir
Dokchitser sont vraies.

1. Introduction

In this paper, we study the behaviour of the Hasse-Weil L-functions
of elliptic curves, over the so-called “False Tate Curve” extensions of Q.
These are non-abelian p-adic Lie extensions of dimension two, which may
be constructed as follows.

Fix a prime number p 6= 2. Let ∆ > 1 denote a p-power free integer.
We suppose that ∆ is coprime to p, which ensures all the primes above ∆

Keywords: Iwasawa theory, modular forms, p-adic L-functions.
Math. classification: 11R23, 11G40, 19B28.
(*) To form part of the second author’s PhD thesis.



1024 Daniel DELBOURGO & Tom WARD

tamely ramify in the false Tate curve tower. For each integer n > 0, we set
Kn = Q(µpn) and write Fn = Q(µpn)+ for the maximal real subfield. Then

QFT =
⋃
n>1

Q
(
µpn ,

pn√
∆
)
.

Basic Galois theory informs us that

Gal(QFT /Q) ∼=
(

Z×p Zp
0 1

)
C GL2(Zp).

In other words, the Galois group is a semi-direct product of two p-adic Lie
groups of dimension one. In terms of a field diagram,

ZpoZ×p

QFT

Q(µpn , pn√
∆)

pn Z/pnZ

Kn

2
rrrrrrrrrrr

(Z/pnZ)×Fn

(pn−pn−1)/2

p

Q p

In this situation the representation theory is very well understood. It is
proved in [6] that Gal(QFT /Q) has a unique self-dual representation of
dimension pk− pk−1, which we denote by ρk,Q for each k > 1. This may be
written

ρk,Q = IndQ
Kk

χρk

for a character χρk
of Gal(QFT /Kk). Putting ρ0,Q = 1, every irreducible

representation of Gal(QFT /Q) has the form ρk,Q ⊗ ψ for some k > 0, and
some character

ψ : Gal
(
Q(µp∞)/Q

)
→ C×.

For the rest of this section, we set G = Gal(QFT /Q).

Remark. — Let E be an elliptic curve over Q. As part of a more general
“GL2-Main Conjecture”, Coates et al [3] predict the existence of a non-
abelian p-adic L-function

Lanal
p (E/QFT ) ∈ K1(Zp[[G]]S∗)

ANNALES DE L’INSTITUT FOURIER



NON-ABELIAN CONGRUENCES 1025

whose evaluation at Artin representations ρ : G → GL(V ) essentially
yield the ρ-twisted L-values L(1, E, ρ). Here Zp[[G]]S∗ is the localisation
of Zp[[G]] at a certain Ore set S∗ =

⋃
n>0 p

−nS.

In his beautiful paper [9], Kato reduced the question of existence for
Lanal
p into a sequence of congruence relations, amongst the abelian p-adic

L-functions interpolating E over the false Tate curve extension. More pre-
cisely, if U (n) = ker(Z×p → (Z/pnZ)×) then there exists an injection

ΘG,S∗ : K1(Zp[[G]]S∗)
∏

(ρn)∗
−→

∏
n>0

Quot(Zp[[U (n)]])×.

Kato calculated that a sequence (an)n>0 lies in the image of ΘG,S∗ if and
only if∏

16i6n

Ni,n

(
ai

N0,i(a0)
.
φ ◦N0,i−1(a0)

φ(ai−1)

)pi

≡ 1 mod p2n for all n ∈ N.

Here we should point out that Ni,j : Zp[[U (i)]]× → Zp[[U (j)]]× denotes the
norm map, and φ : Zp[[Z×p ]] → Zp[[Z×p ]] is the ring homomorphism induced
by the p-power map on Z×p .

Let E be an elliptic curve defined over the rationals, in particular, it is
modular by the work of Wiles et al. Moreover, we shall assume that E is
semistable (otherwise our distributions turn out to be identically zero). We
write fE for the newform of weight two and conductor NE associated to E.
In order to state our full results, we are forced to make three assumptions
about the prime p, and the field Fn = Q(µpn)+.

Hypothesis (Ord). — The elliptic curve E has good ordinary reduction
at p, with ∆ and NE coprime integers.

Hypothesis (p-Irr). — The base change f/Fn
of fE to the field Fn is not

congruent modulo p to any other Hilbert modular form of the same level.

Hypothesis (Per). — Conjecture 1.3 from [4] holds for the cusp form fE
and the field Fn. This implies the automorphic and motivic periods of E
are the same, up to a p-adic unit.

The third hypothesis has been verified numerically by Doi-Hida-Ishii in
many cases. It is intimately connected to the orders of congruence modules
for the space of Hilbert automorphic forms over Fn (see [4] for the precise
statement).

Our first result is an integral version of a theorem of Shai Haran from [8],
concerning the existence of abelian L-functions which are attached to the

TOME 58 (2008), FASCICULE 3



1026 Daniel DELBOURGO & Tom WARD

motives h1(E) ⊗Z M(ρn). Recall that for an Artin representation ρ over
Fn, one defines the ρ-twisted L-function L(s,E, ρ) by the infinite product

L(s,E, ρ) =
∏
v

det
(

1−NFn/Q(v)−sΦv
∣∣∣(H1

l (E)⊗Ql
ρ
)Iv
)−1

where Φv is a geometric Frobenius element for v, and Iv is the inertia group.
This Euler product converges to an analytic function on Re(s) > 3/2. In
general, the L-functions of E and its twists are conjectured to have an
analytic continuation to all of C.

Theorem 1.1. — Let p denote the unique prime of Fn above p. As-
sume that E satisfies Hypothesis (Ord), and that in addition both of
(p-Irr) and (Per) hold for fE over Fn. Then there exists a unique element
Lp(E, ρn) ∈ Zp[[U (n)]] such that

ψ(Lp(E, ρn)) =
εFn(ρn ⊗ ψ)p

α
f(ρn⊗ψ,p)
p

× Pp(ρn ⊗ ψ, α
−[Fn:Q]
p )

Pp(ρn ⊗ ψ−1, α
′−[Fn:Q]
p )

× LS(1, E, ρn ⊗ ψ−1)
(Ω+

EΩ−E)φ(pn)/2

for all finite characters ψ of U (n).

Note. — Here Pp(ρn ⊗ ψ,X) denotes the characteristic polynomial of
Φp on the inertia invariant subspace, and αp denotes the p-adic unit root of

X2 − ap(E)X + p

with α′p being the non-unit root. Further, εFn
(ρn ⊗ ψ)p denotes the local

ε-factor at p. This factor depends on the choice of a local Haar measure and
an additive character at p (see [14] for details). We choose the Haar measure
dx which gives Zp measure 1, and the additive character τ : (Qp,+) → C×
given by τ(ap−m) = exp(2πia/pm) with a ∈ Zp (these are the choices used
in [3]).

It is vital to know the p-integrality of the above L-function when tackling
Kato’s higher congruences. We now put an = Lp(E, ρn), and consider both

bn = an/N0,n(a0) and cn = bn/φ(bn−1).

Kato’s calculations in [9] of the image of K1 predict that∏
16i6n

Ni,n(ci)p
i

≡ 1 mod p2n.

ANNALES DE L’INSTITUT FOURIER



NON-ABELIAN CONGRUENCES 1027

Theorem 1.2. — Under the same hypotheses as the previous result,
the non-abelian congruences∏

16i6n

Ni,n(ci)p
i

≡ 1 mod pn+1

hold true.

When n > 1 these congruences are (conjecturally) not the best possible.
For example, if n = 2 we expect a congruence modulo p4 not p3, if n = 3
we expect one modulo p6 not p4, and so on. However when n = 1, we have
proved the congruences found numerically by Tim and Vladimir Dokchitser.

Theorem 1.3. — Under the same hypotheses, the congruences com-
puted in [5] always hold, i.e.

a1 ≡ N0,1(a0) mod p.

Remarks.
(i) Theorem 1.3 was proved at p = 3 by T. Bouganis in [1], using prop-

erties of the 3-adic Eisenstein measure. Likewise, he had a non-integral
version of Theorem 1.1.

(ii) In fact Hypothesis (Per) is not actually necessary. However, it must
then be replaced with the assumption that the ρn-twisted homology of
the space of modular symbols on Γ0(NE) is p-integral (which is an old
conjecture of Glenn Stevens from [13]).

(iii) If we replace Hypothesis (Ord) with the condition that E has bad
multiplicative reduction at p, then the congruences mentioned above still
hold.

Acknowledgements. — The authors thank Vladimir Dokchitser for his
very helpful comments, and also for the argument which proves Claim (?).
They are also grateful to Thanasis Bouganis, and strongly urge the reader
to consult his forthcoming work on the period relations.

2. Algebraic-valued distributions

Let ρk := IndFk

Kk
χρk

denote the two-dimensional Artin representation
over Fk, and write ρk/Fn := ResFn ρk for its restriction to Fn. Consider
the finite set of primes

S = {v : v is a prime of Fn, v|p∆} .

TOME 58 (2008), FASCICULE 3



1028 Daniel DELBOURGO & Tom WARD

Our main goal is to show for every integer n > k, there exists a Q-valued
distribution interpolating

simple factors× LS(1, E, ρk/Fn ⊗ ψ−1)
a period

for a suitable family of Hecke characters ψ (see Theorem 3.4 for the precise
statement).

2.1. Hilbert modular forms

Let F be a totally real field such that F/Q is abelian. Following the
notation from [10], let h = |Cl†(F )| be the narrow class number of F , and
choose ideles t1, . . . , th such that t̃λ COF (the ideals generated by the tλ)
are all prime to p, and form a complete set of representatives for Cl†(F ).
We also denote the different of F/Q by dF .

Hilbert automorphic forms over F are holomorphic functions f : GL2(AF )
→ C satisfying certain automorphy properties (see [10] or [12] for details).
They also correspond to h-tuples (f1, . . . , fh) of Hilbert modular forms on
Hd (where d = [F : Q]). If f ∈ Mk(c, ψ) (the set of Hilbert automorphic
forms of parallel weight k, level c and character ψ) then

fλ|kγ = ψ(γ)fλ

for all γ ∈ Γλ(c), where

Γλ(c) =
{(

a b

c d

)
: b ∈ t̃−1

λ d−1
F , c ∈ t̃λcdF , a, d ∈ OF , ad− bc ∈ O×

F

}
.

We define
eF (ξz) = exp

(
2πi

∑
16a6d

ξτaza

)
where z = (z1, . . . , zd) ∈ Hd, ξ ∈ F and τ1, . . . , τd are the embeddings
F ↪→ R. Then, each component fλ has a Fourier expansion of the form

fλ(z) =
∑
ξ

aλ(ξ)eF (ξz),

where the sum is taken over all totally positive ξ ∈ t̃λ and ξ = 0. If f is a
cusp form, then aλ(0) = 0 for all λ. The set of cusp forms of parallel weight
k, level c and character ψ is written Sk(c, ψ).

The form f itself also has Fourier coefficients C(m, f) which satisfy

C(m, f) =

{
aλ(ξ)NF/Q(t̃λ)−k/2 if the ideal m = ξt̃−1

λ is integral;
0 if m is not integral.

ANNALES DE L’INSTITUT FOURIER



NON-ABELIAN CONGRUENCES 1029

We will use certain linear operators on the space of Hilbert automorphic
forms. Let q be an integral ideal of OF , and q an idele such that q̃ = q. We
define the operators q and U(q) on f ∈Mk(c, ψ):

(f |q)(x) = NF/Q(q)−k/2f
(
x

(
q 0
0 1

))
(f |U(q))(x) = NF/Q(q)k/2−1

∑
v∈OF /q

f
(
x

(
1 v

0 q

))
.

These operators may also be described by their effect on the Fourier coef-
ficients of f , namely

C(m, f
∣∣q) = C(mq−1, f) and C(m, f |U(q)) = C(mq, f).

We also use the involution Jc, which is defined by

(f |Jc)(x) = ψ(det(x)−1)f
(
x

(
0 1
c0 0

))
where c0 is an idele such that c̃0 = cd2

F . Then, f |Jc ∈ Mk(c, ψ−1). This
map has the property

f |Jmc = NF/Q(m)k/2(f
∣∣Jc)

∣∣m.
Further, when f is a primitive form in Mk(c, ψ), we have

f |Jc = Λ(f)f ι,

where Λ(f) is a root of unity, and f ι is the form defined by
C(m, f ι) = C(m, f).

Remark. — If fE ∈ Snew
2 (Γ0(NE)) is the newform associated to E/Q,

then we write f for the base change of fE to the totally real field F. As-
suming F/Q is abelian, this is the Hilbert automorphic form whose L-series
satisfies

L(s, f) =
∏
ψ∈Ĝ

L(s, fE , ψ)

where G = Gal(F/Q).

We introduce the following notation: for a character χ: Gal(QFT/Fn)→C×,
we write χ† : IFn

→ C× for the character of ideals associated to χ via com-
position with the reciprocity map. Specifically χ† is normalised by

χ†(q) = χ(Frobq)

for all primes q of Fn, where Frobq denotes an arithmetic Frobenius element
at q.

TOME 58 (2008), FASCICULE 3



1030 Daniel DELBOURGO & Tom WARD

Now, let K/F be a totally imaginary quadratic extension. We have the
following theorem due to Serre [11]:

Theorem 2.1. — If ρ is an Artin representation over F which is in-
duced from the Hecke character χρ over K, then there exists a Hilbert
automorphic form gρ over F such that gρ ∈ S1(c(gρ), (det ρ)†) and

L(s,gρ) = L(s, ρ).

Further, gρ is primitive if and only if χρ is a primitive character.

It is easily checked that the Fourier coefficients of gρ are

C(m,gρ) =
∑

aCOK ,
aā=m

χ†ρ(a).

Also, in the case F = Fk,K = Kk and ρ = ρk, we assume gcd(p∆, NE) = 1
which implies that c(f) and c(gρk

) are coprime ideals of OFk
.

The character (det ρ)† can be written as

(det ρ)†(a) = θK/F (a)χ†ρ(aOK)

where θK/F is the quadratic character of K/F , given on primes of OF by

θK/F (q) =


1 if q splits in K/F

−1 if q is inert in K/F

0 if q ramifies in K/F.

We use a non-standard normalisation of the Petersson inner product (from
[10]), namely

〈F,G〉c :=
h∑
λ=1

∫
Γλ(c)\Hd

Fλ(z)Gλ(z)N(y)kdν(z)

where d = [F : Q], and

dν(z) =
∏

16j6d

y−2
j dxjdyj .

Finally ΩAut
E/Fn

= (2π)φ(pn)
〈
f/Fn

, f/Fn

〉
c(f)

denotes the automorphic period.

2.2. Integrality

We will study the value at s = 1 of the normalised Rankin-Selberg prod-
uct

Ψ(s, f ,gρ) =
(

Γ(s)
(2π)s

)2[F :Q]

Lc(2s− 1, (det ρ)†)L(s, f ,gρ)

ANNALES DE L’INSTITUT FOURIER



NON-ABELIAN CONGRUENCES 1031

where c = c(f)c(gρ), and

L(s, f ,gρ) =
∑

a

C(a, f)C(a,gρ)NF/Q(a)−s.

Our first goal is to prove that

εF (0, ρ) ·
Ψ(1, f ,gιρ)
〈f , f〉c(f)

∈ OCp
,

i.e. that this quantity is p-integral (it is already known to be algebraic by
results of Shimura et al).

We will need a few preparatory lemmas, starting with a result about the
epsilon factor εF (s, ρ). The Artin L-function L(s, ρ) obeys the functional
equation

Γ∞(s)L(s, ρ) = εF (s, ρ)Γ∞(1− s)L(1− s, ρ∨)

where ρ∨ is the contragredient representation, and

Γ∞(s) := ((2π)−sΓ(s))[F :Q].

The global ε-factor at zero may be decomposed into an infinite product

εF (0, ρ) =
∏

all places v

εFv
(ρv, ψν , dxν)

where each local factor depends on the normalisation of additive characters
ψν , and Haar measures dxν (however the product does not).

Lemma 2.2. — Setting εF (ρ) = εF (0, ρ), we have

Λ(gρ) = i−[F :Q]NF/Q(cd2
F )−1/2εF (ρ).

Proof. — Following Shimura in [12], we define

R(s,g) := NF/Q(cd2
F )s/2Γ∞(s)L(s,g)

where g is a Hilbert automorphic form of parallel weight 1 and conductor c.
Then from [12], (2.48) there is a functional equation

R(s,g) = i[F :Q]R(1− s,g|Jc).

Supposing g is primitive, we have g|Jc = Λ(g)gι, so the functional equation
becomes R(s,g) = i[F :Q]Λ(g)R(1−s,gι). However, taking g = gρ we obtain
L(s, ρ) = L(s,g) and L(s, ρ∨) = L(s,gι). Therefore

Γ∞(s)L(s, ρ) = εF (s, ρ)Γ∞(1− s)L(1− s, ρ∨)

can be rewritten as

R(s,g) = εF (s, ρ)NF/Q(cd2
F )s−1/2R(1− s,gι).

TOME 58 (2008), FASCICULE 3



1032 Daniel DELBOURGO & Tom WARD

Comparing this with the functional equation from [12], it follows that there
is an equality i[F :Q]Λ(g) = εF (s, ρ)NF/Q((cd2

F )s−1/2, which gives the result.
�

We use the following integral representation, a special case of [12], (4.32):

Proposition 2.3.
Ψ(1, f ,gι) = D

1/2
F π−[F :Q] 〈f ι, V (0)〉c

where DF is the discriminant of F/Q and

V (0) = gι ·K0
1 (0; c,OF ; (det ρ)†−1),

with K0
1 the Eisenstein series given in [10] equation (4.5) whose

λ-components are:

K0
1 (0; c,OF ;ω)λ(z)

= NF/Q(t̃λ)1/2
∑
c,d

sign(NF/Q(d))ω∗(dOF )NF/Q(cz + d)−1.

Note that the sum is taken over the set of equivalence classes

(c, d) ∈ t̃λdF c×OF
∼

where the relation ∼ is defined by (c, d) ∼ (uc, ud) for all u ∈ O×
F .

It is useful to convert K0
1 to an Eisenstein series which has a user-friendly

Fourier expansion; we can do this via the involution Jc. Using [10] (4.6),
one can show:

K0
1 (0; c,OF ; (det ρ)†−1)

∣∣Jc =
(4πi)[F :Q]

D
1/2
F NF/Q(c(g)d2

F )1/2
E1(0, c, (det ρ)†−1).

Here E1 is the Eisenstein series (4.13) in [10], with λ-components

E1(0, c, ω)λ(z)

=
NF/Q(t̃λ)−1/2D

1/2
F

(−4πi)[F :Q]

∑
c,d

sign(NF/Q(c))ω∗(cOF )NF/Q(cz + d)−1

such that ω is an ideal character modulo c, and the sum ranges over

(c, d) ∈
OF × t̃−1

λ d−1
F

∼
.

The Fourier expansion of each λ-component is computed in [10], Prop 4.2:

E1(0, c, (det ρ)†−1)λ(z) = NF/Q(t̃λ)−1/2
∑

0�ξ∈t̃λ

aλ(ξ)eF (ξz)

ANNALES DE L’INSTITUT FOURIER



NON-ABELIAN CONGRUENCES 1033

with
aλ(ξ) =

∑
ξ̃=b̃c̃,

c∈OF ,

b∈t̃λ

(det ρ)†−1(c̃).

We are now in a good position to prove our integrality result.

Theorem 2.4. — Let g = gρ. If there exists no non-trivial congruence
modulo p between f and another automorphic form in M2(c(f)), then

εF (ρ) · Ψ(1, f ,gι)
〈f , f〉c(f)

is p-integral, where εF (ρ) = εF (0, ρ) as before.

Proof. — Let c = c(f)c(g). By Proposition 2.3,

Ψ(1, f ,gι) = D
1/2
F π−[F :Q] 〈f ι, V (0)〉c

where V (0) = gι ·K0
1 (0; c,OF ; (det ρ)†−1). Consider V (0)

∣∣Jc; by our earlier
formula for K0

1

∣∣Jc we have

V (0)|Jc = (gι
∣∣Jc) · (K0

1

∣∣Jc)

= Λ(gι)NF/Q(c(f))1/2(g
∣∣c(f)) · (K0

1

∣∣Jc)

= Λ(gι)(4πi)[F :Q]D
−1/2
F NF/Q(c(f))1/2NF/Q(c(g)d2

F )−1/2(g
∣∣c(f))

· E1(0, c, (det ρ)†−1).

We now employ the trace map Trc
c(f) : M2(c, ψ) → M2(c(f), ψ), which is

defined by (
H
∣∣Trc

c(f)

)
(x) =

∑
v∈T

H
(
x

(
1 0
cv 1

))
.

where c is an idele such that c̃ = c(f), and T is a set of coset representatives
for OF /c(g). This map has the property

〈F,H〉c =
〈
F,H

∣∣Trc
c(f)

〉
c(f)

for any two Hilbert automorphic forms H ∈ M2(c, ψ),F ∈ S2(c(f), ψ).
Further, from [10] equation (4.11) we have the formula

H
∣∣Trc

c(f) = H
∣∣Jc ◦ U(c(g)) ◦ Jc(f).

This arises from the definitions of the operators, and the matrix identity(
1 0
cv 1

)
= (cm)−1

(
0 1
cm 0

)(
1 v

0 m

)(
0 1
c 0

)
which holds for any c, m and v.

TOME 58 (2008), FASCICULE 3



1034 Daniel DELBOURGO & Tom WARD

Remark. — Setting Θ = (g|c(f)) · E1(0, (det ρ)†−1), we calculate

Ψ(1, f ,gι) = D
1/2
F π−[F :Q] 〈f ι, V (0)〉c

= D
1/2
F π−[F :Q]

〈
f ι, V (0)

∣∣Trc
c(f)

〉
c(f)

= D
1/2
F π−[F :Q]

〈
f ι, V (0)

∣∣Jc ◦ U(c(g)) ◦ Jc(f)

〉
c(f)

= Λ(gι)(4i)[F :Q]NF/Q(c(f))1/2NF/Q(c(g)d2
F )−1/2

·
〈
f ι,Θ

∣∣U(c(g)) ◦ Jc(f)

〉
c(f)

.

Observe that Λ(gι)(4i)[F :Q]NF/Q(c(f))1/2 is a p-adic unit, as gcd(p, 4c(f))=1.
Also, from Lemma 2.2 we know that ordp(NF/Q(c(g)d2

F )1/2) = ordp(εF (ρ)).
Therefore,

ordp

(
εF (ρ) · Ψ(1, f ,gι)

〈f , f〉c(f)

)
= ordp

(〈
f ι,Θ

∣∣U(c(g)) ◦ Jc(f)

〉
c(f)

〈f , f〉c(f)

)
so it suffices to prove the p-integrality of the quantity on the right hand
side. As the operator J is an involution,〈

f ι,Θ
∣∣U(c(g)) ◦ Jc(f)

〉
c(f)

=
〈
f ι
∣∣Jc(f),Θ|U(c(g))

〉
c(f)

= Λ(f ι)
〈
f ,Θ

∣∣U(c(g))
〉

c(f)
.

By choosing a basis for the spaceM2(c(f)) which includes f , we may express

Θ
∣∣U(c(g)) = cf +

∑
fi 6=f

cifi
∣∣bi

for algebraic numbers ci (which are almost all zero), and primitive forms
fi of level ai such that aibi divides c(f).

We deduce that〈
f ι,Θ

∣∣U(c(g)) ◦ Jc(f)

〉
c(f)

〈f , f〉c(f)
= Λ(f ι)

(
c+

∑
fi 6=f

ci

〈
f , fi

∣∣bi〉c(f)
〈f , f〉c(f)

)
.

Quoting Dünger’s paper [7], Section 5.5,〈
f , fi

∣∣bi〉c(f)
〈f , fi〉c(f)

=
(
L(s, f , f ιi |bi)
L(s, f , f ιi )

)
s=2

.

One may therefore write〈
f , fi

∣∣bi〉c(f)
〈f , f〉c(f)

=
(
L(s, f , f ιi |bi)
L(s, f , f ιi )

)
s=2

×
〈f , fi〉c(f)
〈f , f〉c(f)

.
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But 〈f , fi〉c(f) = 0 as f and fi are distinct primitive forms, whence〈
f , fi

∣∣bi〉c(f)
〈f , f〉c(f)

= 0

for each i. As a consequence,〈
f ι,Θ|U(c(g)) ◦ Jc(f)

〉
c(f)

〈f , f〉c(f)
= Λ(f ι)c.

Lastly Λ(f ι) is a root of unity, thus it suffices to prove c is p-integral. Sup-
pose not; then c−1 ≡ 0 mod p. We know that both E1(0, (det ρ)†−1) and
gρ have p-integral Fourier coefficients, so Θ = (gρ|c(f)) ·E1(0, c, (det ρ)†−1)
does too. Therefore

c−1Θ
∣∣U ≡ 0 mod p,

whence

f = c−1Θ
∣∣U −

∑
fi 6=f

c−1cifi
∣∣bi

≡ −
∑
fi 6=f

c−1cifi
∣∣bi mod p.

It follows that f is congruent modulo p to some other automorphic form in
M2(c(f)), contradicting the hypothesis of the theorem. This completes the
proof. �

2.3. Constructing the distribution

Having established our integrality result, we can now go on to construct
the distribution. First we work over a totally real field F .

For a finite place v 6= p of F , we label roots α(v), α′(v) of the polynomial

X2 − C(v, f)X +NF/Q(v) = (X − α(v))(X − α′(v)).

We also define α(p) and α′(p) as the roots of

X2 − C(p, f)X + p = (X − α(p))(X − α′(p)).

where α(p) is the p-adic unit, and α′(p) is the non-unit root. From these
definitions, we extend α(m), α′(m) multiplicatively to all ideals m of OF .

Definition 2.5. — Set l0 :=
∏

q|∆ q. Then the pl0-stabilisation of f is
defined to be

f0 :=
∑
a|pl0

M(a)α′(a) · f
∣∣a

where M is the Möbius function on ideals.
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Following (3.14) of [10], we also define

gρ,pl0 :=
∑
n|pl0

M(n) · gρ
∣∣U(n) ◦ n.

In particular gρ,pl0 ∈M1(c(gρ)p2l20, (det ρ)†).
Set c0 = pl0c(f). We shall choose ideals m′ and l′ such that m′ is a power

of p, supp(l′) = supp(l0), and that c(gρ)p2l20|m′l′. Clearly

f0 ∈ S2(c0) ⊂ S2(c(f)m′l′)

and
gρ,pl0 ∈M1(c(gρ)p2l20, (det ρ)†) ⊂M1(c(f)m′l′, (det ρ)†).

Then the contragredient Euler factor is given by

Eulpl0(ρ
∨, s) :=

∏
v|pl0

(1− α′(v)β̂(v)N(v)−s)(1− α′(v)β̂′(v)N(v)−s)

× (1− α−1(v)β(v)N(v)s−1)(1− α−1(v)β′(v)N(v)s−1).

N.B. We have factorised the Hecke polynomial as

X2 − C(v,gρ)X + (det ρ)†(v) = (X − β(v))(X − β′(v)),

and similarly the dual Hecke polynomial via

X2 − C(v,gρ)X + (det ρ)†
−1

(v) = (X − β̂(v))(X − β̂′(v)).

Remark. — Because we assumed that E is semistable over Q, the coef-
ficient

C(c(f), f) = (−1)#T
ns

F

where T nsF denotes the set of finite places where E has non-split multiplica-
tive reduction. In particular, C(c(f), f) 6= 0.

Lemma 2.6.

Ψ(s, f0,gρ,pl0

∣∣Jc(f)m′l′) = NF/Q

(
c(f)m′l′

c(gρ)

)1/2−s

Λ(gρ)α
(

m′l′

c(gρ)

)
× C(c(f), f) Eulpl0(ρ

∨, s)Ψ(s, f ,gιρ).

Proof. — Recall the formula f |Jmc = NF/Q(m)k/2(f
∣∣Jc)

∣∣m from Sec-
tion 2.1. Since c(gρ,pl0) = c(gρ)p2l20, it follows that

gρ,pl0

∣∣Jc(f)m′l′ = NF/Q

(
c(f)m′l′

c(gρ)p2l20

)1/2

·
(
gρ,pl0

∣∣Jc(gρ)p2l20

) ∣∣∣ c(f)m′l′

c(gρ)p2l20
.

For brevity, we will write

h = gρ,pl0

∣∣Jc(gρ)p2l20
.
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Then

Ψ(s,f0,gρ,pl0

∣∣Jc(f)m′l′)

= NF/Q

(
c(f)m′l′

c(gρ)p2l20

)1/2

Ψ
(
s, f0,h

∣∣∣∣ c(f)m′l′

c(gρ)p2l20

)
= NF/Q

(
c(f)m′l′

c(gρ)p2l20

)1/2−s

Ψ
(
s, f0

∣∣∣∣U ( c(f)m′l′

c(gρ)p2l20

)
,h
)

= NF/Q

(
c(f)m′l′

c(gρ)p2l20

)1/2−s

α

(
m′l′

c(gρ)p2l20

)
C(c(f), f)Ψ (s, f0,h) .

Here we have exploited the fact that

L
(
s, f0,gιρ|a

)
= NF/Q(a)−sL

(
s, f0|U(a),gιρ

)
for any ideal a, and also the formula

f0
∣∣U ( c(f)m′l′

c(gρ)p2l20

)
= α

(
m′l′

c(gρ)p2l20

)
C(c(f), f)f0

which follows by construction of the pl0-stabilisation f0. Furthermore,

Ψ(s, f0,h) = NF/Q(p2l20)
1−2sα(p2l20)Λ(gρ) Eulpl0(ρ

∨, s)Ψ(s, f ,gιρ).

Combining the two equations together yields the required result. �

Definition 2.7. — We define the complex linear functional LF on the
vector space M2(c0) by the rule

LF : Θ 7−→
〈
f0ι,Θ

∣∣Jc0

〉
c0

〈f , f〉c(f)
.

We shall now consider the automorphic form

Φ = Φ(ρ/F, c(f)m′l′) := gρ,pl0 · E1(0, c(f)m′l′, (det ρ)†−1)

where E1 refers to the Eisenstein series of Section 2.2.

Corollary 2.8.

NF/Q(c(gρ)d2
F )1/2Λ(gρ)

α(c(gρ))
Eulpl0(ρ

∨, 1)
Ψ(1, f ,gιρ)
〈f , f〉c(f)

=
(−4i)[F :Q]

α(m′l′)C(c(f), f)
LF
(
Φ
∣∣U(m′l′p

−1
l−1
0 )
)
.

Proof. — Applying the integral representation from Proposition 2.3, then
using the trace map Trc(f)m′l′

c0 as we did to prove integrality, one obtains

Ψ(1, f0,gρ,pl0

∣∣Jc(f)m′l′)
〈f , f〉c(f)

=
(−4i)[F :Q]

NF/Q(c(f)m′l′d2
F )1/2

LF
(
Φ
∣∣U(m′l′p

−1
l−1
0 )
)
.
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Combining this formula with Lemma 2.6 gives the desired result. �

Remark. — The left-hand side of the equation in the corollary does not
depend on m′ or l′, so neither does the right hand side. As a consequence

(−4i)[F :Q]

NF/Q(dF )α(m′l′)C(c(f), f)
LF
(
Φ
∣∣U(m′l′p

−1
l−1
0 )
)

will satisfy the axioms of a distribution, with respect to the finitely additive
functions ψ.

We now consider the Hilbert automorphic form gρk/Fn
, the base change

of gρk
to Fn. Just as gρk

is associated to ρk = Indχρk
, we now show that

gρk/Fn
is also associated to an induced representation.

Lemma 2.9. — If ρk = IndFk

Kk
(χρk

), then

L(s,gρk/Fn
) = L(s, IndFn

Kn
(ResKn χρk

)).

Proof. — Firstly, by the properties of the base change

L(s,gρk/Fn
) =

∏
ψ∈Ĝ

L(s, ρk ⊗ ψ) = L(s, ρk ⊗RFn/Fk
)

where G = Gal(Fn/Fk), and RFn/Fk
= IndFk

Fn
1 denotes its regular repre-

sentation. However, the Artin formalism implies

L(s, ρ/M) = L(s, Ind ρ/L)

whenever ρ is an Artin representation over M , and L is a subfield of M .
Therefore

L(s, ρk ⊗RFn/Fk
) = L(s, ρk ⊗ IndFk

Fn
1) = L(s,ResFn ρk ⊗ 1)

and the result follows because ResFn ρk = IndFn

Kn
(ResKn χρk

). �

N.B. In a slight abuse of notation, we have written ρk/Fn as shorthand
for the Artin representation ResFn

ρk = IndFn

Kn
(ResKn

χρk
).

Let us denote by Gn the topological group Gal(F ab
n,S/Fn) where F ab

n,S is the
maximal abelian extension of Fn unramified outside the set S = {v : v|pl0}
and the infinite places. For the remainder of this section, ψ : Gn → C×
will be a character with conductor fψ. We shall apply our earlier results to
gρ = gρk/Fn⊗ψ, as the representation ρk/Fn ⊗ ψ is certainly induced by
the character ResKn(χρk

⊗ ψ) over Kn.
Further, it is easy to check that

ResKn(χρk
⊗ ψ)† = (χ†ρk

⊗ ψ†) ◦NKn/Kk
.
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NON-ABELIAN CONGRUENCES 1039

Also, the character of gρk/Fn⊗ψ is (ResFn det ρk)† ⊗ ψ†2, and we have

(ResFn(det ρk)⊗ ψ2)† = ((det ρk)† ◦NFn/Fk
)⊗ ψ†2.

Definition 2.10. — The parallel weight 2 form Φn,kψ is given by

Φn,kψ = Φn,kψ (ρk/Fn ⊗ ψ, c(f/Fn
)m′l′)

:= (gρk/Fn⊗ψ,pl0
) · E1(0, c(f/Fn

)m′l′, (ResFn det ρk)−1 ⊗ ψ−2)

where we now assume m′ and l′ satisfy c(gρ)(pl0fψ)2
∣∣m′l′.

Applying Corollary 2.8 directly to gρk/Fn⊗ψ produces

Corollary 2.11. — For all n > k,

(−4i)φ(pn)/2

α(m′l′)C(c(f), f)
LFn

(
Φn,kψ

∣∣U(m′l′p
−1

l−1
0 )
)

=
NFn/Q(c(gρk/Fn⊗ψ)d2

Fn
)1/2

α(c(gρk/Fn⊗ψ))
× Λ(gρk/Fn⊗ψ)

× Eulpl0(ρk/Fn ⊗ ψ−1, 1)×
Ψ(1, f/Fn

,gιρk/Fn⊗ψ)〈
f/Fn

, f/Fn

〉
c(f)

.

Furthermore, the Fourier coefficients of the λ-component of Φn,kψ are
given by

φn,kψ,λ(ξ) =
∑

ξ=ξ1+ξ2

∑
aCOKn

,

aā=ξ1 t̃
−1
λ

(χ†ρk
◦NKn/Kk

)(a)ψ†(ξ1t̃−1
λ )

×
∑

ξ̃2=b̃c̃,
c∈OFn

,

b∈t̃λ

((det ρk)† ◦NFn/Fk
)−1(c̃)ψ†(c̃)−2.

3. Congruences

The disadvantage of Corollary 2.11 is that it is hard to decipher exactly
what it has to do with Kato’s conjectures. We shall now interpret various
quantites from this formula, back in terms of the arithmetic of E/Q.

3.1. The connection with elliptic curves

First, we will find an expression for the α-term from our main formula.
Recall that we already made a choice of α(q) for each q dividing pl0, in
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order to define the pl0-stabilisation f0. For an Artin representation ρ over
a field F , we denote its conductor by fρ. This is an ideal of OF , and we
write f(ρ, q) for the exponent of the prime q in fρ.

Lemma 3.1.
(i) For each prime q|p∆, there exists a root αq of X2 − aq(E)X + q

such that

α(c(gρk/Fn
⊗ ψ)) = αf(ρk/Fn⊗ψ,p)

p ·
∏
q|∆

αordq(Aχ̃)
q

where χ̃ = ResKn(χρk
⊗ ψ) and Aχ̃ = NKn/Q(fχ̃).

(ii) Furthermore, if we make the stronger assumption that ψ is a char-
acter of Gal(F ab

n,{p}/Fn) i.e. ψ is ramified only at the prime above p,
then

ordq(Aχ̃) = pn − pn−1 for all q|∆.

In particular, α(c(gρk/Fn
⊗ ψ)) is always a p-adic unit.

Proof. — For q 6= p, α(q) is one of the eigenvalues of Frobq acting on the
Tate module Tp(E). However, Frobq = Frob[fn,q:Fq ]

q where fn,q denotes the
residue field of Fn at q. Therefore

α(q) = α[fn,q:Fq ]
q

for one of the roots αq of X2 − aq(E)X + q.
For q = p, we instead consider Tp(Ẽ) where Ẽ denotes the reduction of

E over fn,p. In this case, rankZp
Tp(Ẽ) = 1 because we have assumed E

has good ordinary reduction at p, so α(p) is the unique eigenvalue of Frobp

acting on Tp(Ẽ). Applying the same argument as above, α(p) = αp.

Set c = c(gρk/Fn
⊗ ψ) for brevity. Then α(c) is defined multiplicatively,

so
α(c) =

∏
q∈Spec(OFn

)

q|c

α(q)ordq(c) =
∏

q|NFn/Q(c)

α
ordq(NFn/Q(c))
q .

Because ρk/Fn ⊗ ψ = IndFn

Kn
χ̃, by [12], Section 5

c(gρk/Fn
⊗ ψ) = NKn/Fn

(fχ̃)Disc(Kn/Fn).

However Disc(Kn/Fn) = p, which means

NFn/Q(c) = p ·NKn/Q(fχ̃).

The primes dividing NKn/Q(fχ̃) are those dividing p∆, whence

α(c(gρk/Fn
⊗ ψ)) = α1+ordp(Aχ̃)

p ·
∏
q|∆

αordq(Aχ̃)
q .
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Let P denote the unique prime of Kn above p. We have NKn/Q(P) = p,
from which we deduce

1 + ordp(Aχ̃) = 1 + ordP(fχ̃)

= f(ρk/Fn ⊗ ψ, p)

using standard results on Artin conductors. This proves (i).
It remains to prove assertion (ii). We now assume ψ is ramified only

above p, and that q|∆. We then obtain

ordq(NKn/Q(fχ̃)) =
∑
Q|q

f(χ̃,Q)[kn,Q : Fq]

where the sum is taken over the primes of Kn above q, and kn,Q denotes
the residue field of Kn at Q. Under our additional assumption on ψ, we
can say

f(χ̃,Q) = f(ResKn χρk
,Q)

and the character ResKn χρk
factors through the extension Kn(

pn√
∆)/Kn.

The prime Q is totally yet tamely ramified in this extension. Therefore
ResKn

χρk
is non-trivial on the inertia group, but is trivial on all the

higher ramification groups. By definition of Artin conductor, this implies
f(χ̃,Q) = 1. Therefore,

ordq(NKn/Q(fχ̃)) =
∑
Q|q

[kn,Q : Fq]

= [kn,Q : Fq]× number of primes of Kn above q

= [Kn : Q]

as q is unramified in Kn/Q. Observing that [Kn : Q] = pn−pn−1 completes
the demonstration of (ii).

Finally, as αp was chosen to be a p-adic unit and either choice of αq is
a p-adic unit when q 6= p, it is clear α(c(gρk/Fn

⊗ ψ)) is always a p-adic
unit. �

The following result allows us to link the automorphic form Φn,kψ with
Artin-twists of the Hasse-Weil L-function of E/Fn

.
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Theorem 3.2. — Let χ̃ = ResKn(χρk
⊗ψ), and Aχ̃ = NKn/Q(fχ̃). Then

ihFn (−4i)φ(pn)/2

α(m′l′)C(c(f), f)
LFn

(
Φn,kψ

∣∣U(m′l′p
−1

l−1
0 )
)

=
εFn

(ρk/Fn ⊗ ψ)

α
f(ρk/Fn⊗ψ,p)
p

∏
q|∆ α

ordq(Aχ̃)
q

×
∏
v|pl0

Pv(ρk/Fn ⊗ ψ, α
−[fn,v :Fqv ]
qv )

Pv(ρk/Fn ⊗ ψ−1, α
′−[fn,v :Fqv ]
qv )

× LS(1, E, ρk/Fn ⊗ ψ−1)
ΩAut
E/Fn

where hFn is the narrow class number of Fn.

Proof. — By its very definition,

Pv(ρk/Fn ⊗ ψ,X) = (1− ψ†(v)βn(v)X)(1− ψ†(v)β′n(v)X).

Since α(v), α′(v) are the roots of the polynomial X2−C(v, f)X+NFn/Q(v),
clearly α′(v)NFn/Q(v)−1 = α(v)−1 and

Pv(ρk/Fn ⊗ ψ, α(v)−1)

= (1− ψ†(v)βn(v)α′(v)NFn/Q(v)−1)(1− ψ†(v)β′n(v)α
′(v)NFn/Q(v)−1).

Applying a similar formula for Pv(ρk/Fn ⊗ ψ, α′(v)−1), we discover

Eulpl0(ρk/Fn ⊗ ψ−1, 1)

=
∏
v|pl0

Pv(ρk/Fn ⊗ ψ, α(v)−1)Pv(ρk/Fn ⊗ ψ−1, α(v)−1).

Now the Euler factor of Ψ(1, f/Fn
,gρk/Fn

⊗ ψ) at the primes in S is∏
v|pl0

Pv(ρk/Fn ⊗ ψ, α(v)−1)−1Pv(ρk/Fn ⊗ ψ, α′(v)−1)−1

in which case

Eulpl0(ρk/Fn ⊗ ψ−1, 1) ·Ψ(1, f/Fn
,gρk/Fn

⊗ ψ−1)

=
∏
v|pl0

Pv(ρk/Fn ⊗ ψ, α(v))
Pv(ρk/Fn ⊗ ψ−1, α′(v))

·ΨS(1, f/Fn
,gρk/Fn

⊗ ψ−1).

We showed earlier that α(v) = α
[fn,v :Fq ]
qv and α′(v) = α

′[fn,v :Fq ]
qv where qv

denotes the unique rational prime below v. This gives us the required factor
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∏
v|pl0

Pv(ρk/Fn ⊗ ψ, α
−[fn,v :Fqv ]
qv )

Pv(ρk/Fn ⊗ ψ−1, α
′−[fn,v :Fqv ]
qv )

.

Further, because E is semistable over Q we have an equality

ΨS(1, f/Fn
,gρk/Fn⊗ψ−1)〈

f/Fn
, f/Fn

〉
c(f)

=
LS(1, E, ρk/Fn ⊗ ψ−1)

ΩAut
E/Fn

.

One concludes that

Eulpl0(ρk/Fn ⊗ ψ−1, 1)×
Ψ(1, f/Fn

,gρk/Fn
⊗ ψ−1)〈

f/Fn
, f/Fn

〉
c(f)

=
∏
v|pl0

Pv(ρk/Fn ⊗ ψ, α
−[fn,v :Fqv ]
qv )

Pv(ρk/Fn ⊗ ψ−1, α
′−[fn,v :Fqv ]
qv )

× LS(1, E, ρk/Fn ⊗ ψ−1)
ΩAut
E/Fn

.

Applying Corollary 2.11 and Lemma 3.1 to this, the result follows. �

3.2. The Kummer congruences

We will now prove that we have constructed a integral measure. Let
S = supp(pl0), and ψ be a character of Gn = Gal(F ab

n,S/Fn). Consider the
algebraic distribution on Gn given by∫

x∈Gn

ψ(x)dµ(x) :=
ihFn (−4i)φ(pn)/2

α(m′l′)C(c(f), f)
LFn

(
Φn,kψ

∣∣U(m′l′p
−1

l−1
0 )
)

where the Hilbert modular form

Φn,kψ = Φn,k(ρk/Fn ⊗ ψ, c(f/Fn
)m′l′)

= (gρk/Fn⊗ψ)× E1

(
0, c(f/Fn

)m′l′, (ResFn det ρk)†−1 ⊗ ψ†−2
)

as in the previous section.

Proposition 3.3. — The above distribution µ is a p-bounded measure
on Gn.

Proof. — To show µ is bounded, it suffices to check the Kummer Con-
gruences. In other words, if there exist bψ ∈ Cp (with only finitely many
bψ non-zero) such that ∑

ψ

bψψ(x) ∈ pmOCp
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for all x ∈ Gn, then∑
ψ

Bbψ

∫
x∈Gn

ψ(x)dµ(x) ∈ pmOCp

for some fixed constant B ∈ Z.
From Atkin-Lehner theory, we know the linear functional LFn

decom-
poses into a finite linear combination of the Fourier coefficients. So there
exist finitely many ideals ni and fixed algebraic numbers l(ni) ∈ Q such
that

LFn
(Θ) =

∑
i

C(ni,Θ)l(ni)

for all Θ ∈M2(c0). Therefore, putting

u =
ihFn (−4i)φ(pn)/2

C(c(f), f)α(m′l′)

(which is a p-adic unit), we have

∑
ψ

Bbψ

∫
x∈Gn

ψ(x)dµ(x) = uB
∑
ψ

bψLFn

(
Φn,kψ

∣∣U(m′l′p
−1

l−1
0 )
)

= uB
∑
ψ

bψ
∑
i

C(ni,Φ
n,k
ψ

∣∣U(m′l′p
−1

l−1
0 ))l(ni)

= u
∑
i

(∑
ψ

bψC(nipl0m
′−1

l′
−1
,Φn,kψ )

)
Bl(ni).

We now choose B ∈ Z so that l(ni)B ∈ OCp for all i. The above formula
means it suffices to prove

∑
ψ bψC(n,Φn,kψ ) ∈ pmOCp for any ideal n.

From Corollary 2.11, we know that the λ-component of Φn,kψ has Fourier
coefficients

φn,kψ,λ(ξ) =
∑

ξ=ξ1+ξ2

∑
aCOK ,

aā=ξ1 t̃
−1
λ

(χ†ρk
◦NKn/Kk

)(a)ψ†(ξ1t̃−1
λ )

·
∑

ξ̃2=b̃c̃,
c∈OFn

,

b∈t̃λ

((det ρk)† ◦NFn/Fk
)−1(c̃)ψ†(c̃)−2.

Recall that C(n,Φn,kψ ) = NFn/Q(t̃λ)−1φn,kψ,λ(ξ) when n = ξt̃−1
λ . Therefore
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∑
ψ

bψC(n,Φn,kψ ) = NFn/Q(t̃λ)−1
∑
ψ

bψ
∑
ξ1,ξ2

∑
a

(χ†ρk
◦NKn/Kk

)(a)ψ†(ξ1t̃−1
λ )

·
∑
c

((det ρk)† ◦NFn/Fk
)−1(c̃)ψ†(c̃)−2

= NFn/Q(t̃λ)−1
∑
ξ1,ξ2

∑
a

(χ†ρk
◦NKn/Kk

)(a)

·
∑
c

((det ρk)† ◦NFn/Fk
)−1(c̃)

(∑
ψ

bψψ
†(ξ1t̃−1

λ c̃−2)
)
.

By assumption,
∑
ψ bψψ

†(ξ1t̃−1
λ c̃−2) ∈ pmOCp , and tλ is always chosen so

that NFn/Q(t̃λ) is prime to p. Therefore
∑
ψ bψC(n,Φn,kψ ) ∈ pmOCp . �

Theorem 3.4. — If f/Fn
is not congruent modulo p to a distinct ele-

ment of M2(c(f/Fn
)), then there exists an abelian p-adic L-function

Lp,∆(E, ρk/Fn,ααα) in OCp
[[Gn]] interpolating the special values

εFn(ρk/Fn ⊗ ψ)

α
f(ρk/Fn⊗ψ,p)
p

∏
q|∆ α

ordq(Aχ̃)
q

×
∏
v|pl0

Pv(ρk/Fn ⊗ ψ, α
−[fn,v :Fqv ]
qv )

Pv(ρk/Fn ⊗ ψ−1, α
′−[fn,v :Fqv ]
qv )

× LS(1, E, ρk/Fn ⊗ ψ−1)
ΩAut
E/Fn

at all finite characters ψ of Gn = Gal(F ab
n,S/Fn).

Here χ̃ = ResKn
(χρk

⊗ ψ), Aχ̃ = NKn/Q(fχ̃), and ααα = (αq1 , . . . , αqr )
denotes our choice of αq for each prime q|∆.

Proof. — By Proposition 3.3, there exists an element

Lp,∆(E, ρk/Fn,ααα) ∈ OCp [[Gn]]⊗Z Q

which has special values
∫
x∈Gn

ψ(x)dµ(x) at all characters ψ of Gn. We will
show that these special values are in fact p-integral. We have∫

x∈Gn

ψ(x)dµ(x) =
ihFn (−4i)φ(pn)/2

C(c(f), f)α(m′l′)
LFn

(
Φn,kψ

∣∣U(m′l′p
−1

l−1
0 )
)

= ( p-adic unit )× Eulpl0(ρk/Fn ⊗ ψ−1, 1)

× εFn(ρk/Fn
⊗ ψ)×

Ψ(1, f/Fn
, (gρk/Fn⊗ψ)ι)〈

f/Fn
, f/Fn

〉
c(f)
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by Corollary 2.11. Recall that

Eulpl0(ρk/Fn ⊗ ψ−1, 1)

=
∏
v|pl0

Pv(ρk/Fn ⊗ ψ, α
−[fn,v :Fqv ]
qv )Pv(ρk/Fn ⊗ ψ−1, α

−[fn,v :Fqv ]
qv ).

The polynomials Pq(ρk/Fn ⊗ ψ−1, X) all have p-integral coefficients, and
αq is p-integral for any q 6= p, hence

Pq(ρk/Fn ⊗ ψ, α−[fn,q:Fq ]
q ) ∈ OCp

when q 6= p. Also αp was chosen to be the unit root, thus we also have

Pp(ρk/Fn ⊗ ψ, α−1
p ) ∈ OCp .

The same applies when ψ is replaced by ψ−1, and Eulpl0(ρk/Fn ⊗ ψ−1, 1)
is p-integral too. Lastly, using Theorem 2.4 with ρ = (ρk/Fn)⊗ ψ yields

εFn
(ρk/Fn

⊗ ψ)
Ψ(s, f/Fn

, (gρk/Fn⊗ψ)ι)〈
f/Fn

, f/Fn

〉
c(f)

∈ OCp .

All special values therefore lie in OCp , so Lp,∆(E, ρk/Fn,ααα) ∈ OCp [[Gn]].
�

3.3. The weak form of Kato’s congruences

In this section we will use our distributions to prove a final set of con-
gruences. We do this as evidence for the stronger congruences from Kato’s
paper [9], which imply the existence of a non-abelian p-adic L-function.
Firstly, define (an)n>0 ∈

∏
n>0 Zp[[U (n)]]× by

an = Lp(E, ρn/Fn)

for each n > 0, and recall that bn = an/N0,n(a0) and cn = bn/φ(bn−1) .
Ideally we want to prove that∏

16i6n

Ni,n(ci)p
i

≡ 1 mod p2n

for all n > 1. We are unable to prove this congruence modulo p2n, but we
will at least prove it modulo pn+1.

Lemma 3.5. — For all n ∈ N and 0 6 i 6 n,

an ≡ Ni,n(ai) mod pZp[[U (n)]].
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Proof. — Firstly, we observe that the element Ni,n(ai) has special values

ψ(Ni,n(ai)) =
εFn(ρi/Fn ⊗ ψ)p

α
f(ρi/Fn⊗ψ,p)
p

× Pp(ρi/Fn ⊗ ψ, α
−[Fn:Q]
p )

Pp(ρi/Fn ⊗ ψ−1, α
′−[Fn:Q]
p )

× LS(1, E, ρi/Fn ⊗ ψ)
(Ω+

EΩ−E)φ(pn)/2

at all finite characters ψ of U (n). Let’s abuse notation slightly, and write
Lp,∆(E, ρi/Fn,ααα) for the image of Lp,∆(E, ρi/Fn,ααα) under the projection

OCp
[[Gn]] � OCp

[[U (n)]].

Remark. — The representation ρk/Fn ⊗ ψ factors through M/Fn for
some field M that depends on ψ. By definition Pv(ρk/Fn ⊗ ψ,X) is the
characteristic polynomial of Frobv acting on the inertia invariant subspace
(ρk/Fn ⊗ ψ)Iv̄ . Here v̄ is a place of M dividing v and Iv̄ ⊆ Gal(M/Fn)v̄ is
the inertia subgroup. However, since we are now considering characters ψ
which are ramified only above p, if v|∆ then ResIv̄ ψ = 1. As a corollary

(ρk/Fn ⊗ ψ)Iv̄ = (ρk/Fn)Iv̄ .

Because ρk/Fn is induced from a character over Kn, and v is unramified
in Kn/Fn, one easily checks that ResIv̄

ρk/Fn decomposes as a sum of two
characters. This implies (ρk/Fn)Iv̄ = 0. Thus we have shown
Pv(ρk/Fn ⊗ ψ,X) = 1 for each v dividing ∆, which permits the simpli-
fication∏

v|pl0

Pv(ρk/Fn ⊗ ψ, α
−[fn,v :Fqv ]
qv )

Pv(ρk/Fn ⊗ ψ−1, α
′−[fn,v :Fqv ]
qv )

=
Pp(ρk/Fn ⊗ ψ, α

−[Fn:Q]
p )

Pp(ρk/Fn ⊗ ψ−1, α
′−[Fn:Q]
p )

.

Comparing the special values of Ni,n(ai) and Lp,∆(E, ρi/Fn,ααα), one finds

Ni,n(ai) =
ΩAut
E/Fn

(Ω+
EΩ−E)φ(pn)/2

× γi,nE × Lp,∆(E, ρi/Fn,ααα)

where γi,nE ∈ OCp [[U (n)]] satisfies

ψ(γi,nE ) =

∏
q|∆ α

pn−pn−1

q∏
v 6=p εFn(ρk/Fn ⊗ ψ−1)v

.

Let MCp
denote the maximal ideal of OCp

.

Claim (?). — γ0,n
E ≡ γ1,n

E ≡· · ·≡ γn,nE mod MCp [[U (n)]] for each n ∈ N.
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We will prove this claim at the end of this section (cf. Lemma 3.8).
To make further progress, we recall an important conjecture made by

Doi, Hida and Ishii. This is Conjecture 1.3 of [4], and we state it here in a
simplified form. Let A be a commutative ring, and

λ : hκ(Γ0(N), ψ;A) −→ C

a specialisation of the Hecke algebra, corresponding to a primitive form
f ∈ Sκ(Γ0(N), ψ;A). Moreover, let λ̂ denote the base-change lift of λ to
the totally real field F . Then in the notation of [4]:

Conjecture 3.6 (Doi-Hida-Ishii). — Assume the Galois representa-
tion associated to λ is residually absolutely irreducible, its characters are
distinguished at p, and that λ(T (p)) ∈ A×. Then for each character
θ : SF → {±1},

Ω(θ, λ̂;A) =
∏
σ∈ΣF

Ω(θ(−1σ), λ;A)

up to A-units.

In the sequel, we assume their prediction holds for A = Zp, f = fE and
F = Fn. In this case Ω(±, λ;A) = Ω±E , the Néron periods associated to E.
In fact up to a sign Ω(θ, λ̂;A) = ΩAut

f/Fn
, the automorphic period we defined

earlier. Therefore their conjecture implies

Zp · ΩAut
f/Fn

D-H-I= Zp ·
(
Ω+
fE/QΩ−fE/Q

)[Fn:Q]

= Zp ·
(
Ω+
EΩ−E

)(pn−pn−1)/2
.

In particular, ΩAut
E/Fn

× (Ω+
EΩ−E)−φ(pn)/2 is a p-adic unit. Alternatively,

one can bypass this conjecture by instead assuming that all ρn-twists of
the homology of X1(NE) are p-integral, in the sense of Stevens [13].

Step 1. — We will first show that

Lp,∆(E, ρi/Fn,ααα) ≡ Lp,∆(E, ρn,ααα) mod MCp
[[U (n)]].

This is the same as showing∫
U(n)

ψ(g)dµρi/Fn
(g) ≡

∫
U(n)

ψ(g)dµρn(g) mod MCp

for all characters ψ of U (n). We have already proved these measures are in-
tegral. Following the argument from the proof of Proposition 3.3, it suffices
to show

C(m,Φi,nψ ) ≡ C(m,Φn,nψ ) mod MCp
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for all m and ψ. Fix an ideal m = ξt̃−1
λ . Let us use the fact that the

characters χρi
satisfy

χρi ≡ 1 mod MCp

for each k > 0. Further,

(det ρi)†(b) = θKi/Fi
(b)χ†ρi

(bOKi)

hence
(det ρi)†(b) ≡ θKi/Fi

(b) mod MCp

for each k. Therefore, we have congruences

C(m,Φi,nψ ) =
∑

ξ1+ξ2=ξ

∑
aCOKn

,

aā=ξ1 t̃
−1
λ

(χ†ρi
◦NKn/Ki

)(a)ψ†(aā)

·
∑

ξ̃2=b̃c̃,
c∈OFn

,

b∈t̃λ

((det ρi)† ◦NFn/Fi
)−1(c̃)ψ†(c̃)−2

≡
∑
ξ1,ξ2

∑
a

ψ†(aā)
∑
c

(θKi/Fi
◦NFn/Fi

)(c̃)ψ†(c̃)−2 mod MCp ,

and also

C(m,Φn,nψ ) =
∑

ξ1+ξ2=ξ

∑
aCOKn

,

aā=ξ1 t̃
−1
λ

χ†ρn
(a)ψ†(aā)

∑
ξ̃2=b̃c̃,

c∈OFn
,

b∈t̃λ

(det ρi)†−1(c̃)ψ†(c̃)−2

≡
∑
ξ1,ξ2

∑
a

ψ†(aā)
∑
c

θKn/Fn
(c̃)ψ†(c̃)−2 mod MCp .

We will be done if we can show

θKi/Fi
◦NFn/Fi

= θKn/Fn
.

Recall that θKi/Fi
is given on primes by

θKi/Fi
(q) =


1 if q splits in Ki/Fi

−1 if q is inert in Ki/Fi

0 if q ramifies in Ki/Fi

.

The only prime which ramifies in Kn/Fn is p, and clearly

θKi/Fi
◦NFn/Fi

(p) = θKn/Fn
(p) = 0.

It remains to check this for the non-ramified primes. Let Q and q be
primes of Fn and Fi respectively, both coprime to p and such that Q|q. Let
f = [fn,Q : fi,q], so that NFn/Fi

(Q) = qf . Then we must check

θKi/Fi
(q)f = θKn/Fn

(Q).
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Since [Kn : Fn] = [Ki : Fi] = 2 and [Fn : Fi] = pn−i, Q splits in Kn/Fn if
and only if q splits in Ki/Fi. Therefore,

θKi/Fi
(q) = θKn/Fn

(Q).

Also f divides [Fn : Fi] = pn−i which means f is odd. As a consequence

θKi/Fi
(q)f = θKi/Fi

(q) = θKn/Fn
(Q).

We have verified θKi/Fi
◦NFn/Fi

= θKn/Fn
, which completes Step 1.

Step 2. — The congruence

γi,nE ≡ γn,nE mod MCp [[U (n)]]

follows from Claim (?), and the congruence

Lp,∆(E, ρi/Fn,ααα) ≡ Lp,∆(E, ρn/Fn,ααα) mod MCp [[U (n)]]

from Step 1.
Putting these together, then multiplying by ΩAut

E/Fn
(Ω+

EΩ−E)−φ(pn)/2

(which is a p-adic unit), we obtain

ΩAut
E/Fn

(Ω+
EΩ−E)φ(pn)/2

γi,nE Lp,∆(E, ρi/Fn,ααα)

≡
ΩAut
E/Fn

(Ω+
EΩ−E)φ(pn)/2

γn,nE Lp,∆(E, ρn/Fn,ααα) mod MCp [[U (n)]],

i.e.
Ni,n(Lp(E, ρi)) ≡ Lp(E, ρn) mod MCp [[U (n)]].

Step 3. — We now quote Theorem 4.2 of [2], which states that

εFn
(ρ)p

LS(1, E, ρ)
(Ω+

E)dim ρ+(Ω−E)dim ρ−
∈ Q(ρ)

where Q(ρ) denotes the field of definition of the Artin representation ρ.
However as Dokchitser comments in [6], we actually have Q(ρi) = Q. There-
fore

Lp(E, ρi) ∈ Zp[[U (i)]]⊗Q for all i.

Further, our integrality result (Theorem 2.4) implies that the special
values of

Lp(E, ρi) =
ΩAut
E/Fi

(Ω+
EΩ−E)φ(pi)/2

× γi,iE × Lp,∆(E, ρi,ααα)

are all p-integral; we deduce that

Lp(E, ρi) ∈ Zp[[U (i)]] for all i.
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In conclusion

Ni,n(Lp(E, ρi)) ≡ Lp(E, ρn) mod
(
MCp [[U (n)]] ∩ Zp[[U (n)]]

)
,

i.e.
Ni,n(Lp(E, ρi)) ≡ Lp(E, ρn) mod pZp[[U (n)]]

which is the desired congruence. �

We can now prove the main result of this section.

Theorem 3.7. ∏
16i6n

Ni,n(ci)p
i

≡ 1 mod pn+1

for all n > 1.

Proof. — From the definitions of ci and bi, this congruence can be rear-
ranged into the form∏
16i6n

Ni,n(ai ·φ◦N0,i−1(a0))p
i

≡
∏

16i6n

Ni,n(φ(ai−1)·N0,i(a0))p
i

mod pn+1.

We prove this result by induction on n.

Base Case n=1. — We need to prove

(φ(a0) · a1)p ≡ (φ(a0) ·N0,1(a0))p mod p2.

First note that x ≡ y mod p implies xp ≡ yp mod p2, so it suffices to
show

a1 ≡ N0,1(a0) mod p

which is a consequence of Lemma 3.5 (this also proves Theorem 1.3).

Induction Step. — Our inductive hypothesis is∏
16i6n−1

Ni,n−1(ai · φ ◦N0,i−1(a0))p
i

≡
∏

16i6n−1

Ni,n−1(φ(ai−1) ·N0,i(a0))p
i

mod pn.

Note that if xn ≡ yn mod pr for xn, yn ∈ Zp[[U (n)]], then

Nn−1,n(xn) ≡ Nn−1,n(yn) mod pr+1.

Therefore our inductive hypothesis implies

Nn−1,n

( ∏
16i6n−1

Ni,n−1(ai · φ ◦N0,i−1(a0))p
i

)

≡ Nn−1,n

( ∏
16i6n−1

Ni,n−1(φ(ai−1) ·N0,i(a0))p
i

)
mod pn+1

TOME 58 (2008), FASCICULE 3



1052 Daniel DELBOURGO & Tom WARD

which can be rewritten as

(†)
∏

16i6n−1

Ni,n(ai · φ ◦N0,i−1(a0))p
i

≡
∏

16i6n−1

Ni,n(φ(ai−1) ·N0,i(a0))p
i

mod pn+1.

Now, from Lemma 3.5 we know

an−1 ≡ N0,n−1(a0) mod p

implying that
φ(an−1) ≡ φ(N0,n−1(a0)) mod p.

Combining this with the congruence

an ≡ N0,n(a0) mod p

(which also comes from Lemma 3.5), we obtain

N0,n(a0)φ(an−1) ≡ anφ(N0,n−1(a0)) mod p.

Finally, raising both sides to the pn-th power yields

(N0,n(a0)φ(an−1))p
n

≡ (anφ(N0,n−1(a0)))p
n

mod pn+1.

This provides the factor at i = n; multiplying by the congruence (†) above∏
16i6n

Ni,n(ai ·φ◦N0,i−1(a0))p
i

≡
∏

16i6n

Ni,n(φ(ai−1)·N0,i(a0))p
i

mod pn+1

which completes the induction step.

�

It remains to prove Claim (?).

Lemma 3.8. — For each n > 0,

γ0,n
E ≡ γ1,n

E ≡ · · · ≡ γn,nE mod MCp [[U (n)]]

where γk,nE ∈ OCp [[U (n)]] takes special values

ψ(γk,nE ) =

∏
q|∆ α

pn−pn−1

q∏
v 6=p εFn(ρk/Fn ⊗ ψ−1)v

.

Proof. — We will show that the special values of these elements are
congruent modulo MCp

. Let Mn = Kn(
pn√

∆), so ρk/Fn factors through
G = Gal(Mn/Fn). We need to verify

εFn(ρk/Fn ⊗ ψ)v ≡ εFn(ρn ⊗ ψ)v mod MCp

for all places v of Fn such that v|∆.
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Case 1: v splits in Kn/Fn. — Let v̄ be a place of Mn above v; in this
case, the decomposition group Gv̄ is contained in Gal(Mn/Kn). Therefore,

ResGv̄ (ρk/Fn ⊗ ψ) ∼= (ResGv̄ χρk
⊗ ψ)⊕ (ResGv̄ χρk

⊗ ψ)−1.

Thus it suffices to check that the epsilon-factors of the characters them-
selves are congruent.

Case 2: v is inert in Kn/Fn. — In this case we apply the inductivity of
local epsilon factors in degree zero (see [14] (3.4.8)). This gives us

εFn
(ρk/Fn ⊗ ψ)v
εFn(1⊕ η)v

=
εKn

(ResKn
χρk

⊗ ψ)w
εKn(1)w

where w is a prime of Kn above v, and η is the quadratic character of
Kn/Fn, so in fact IndFn

Kn
1 = 1⊕ η. It can be shown that both εFn

(1⊕ η)v
and εKn(1)w are p-adic units. Therefore we may write

εFn
(ρk/Fn ⊗ ψ)v =

εFn(1⊕ η)v
εKn(1)w

× εKn
(ResKn

χρk
⊗ ψ)w

= (p-adic unit)× εKn(ResKn χρk
⊗ ψ)w.

Thus we are again reduced to proving the congruence for the epsilon factors
of the characters.

In both cases, it is enough to prove for each place w|q that

εKn
(χ)w ≡ εKn

(χ′)w mod MCp

where χ and χ′ are two characters over Kn, both tamely ramified at w
and satisfying χ ≡ χ′ mod MCp

. Recall that these local ε-factors de-
pend on a choice of Haar measure dx and a choice of additive character
τ : (Kn,w,+) → C×. Then εKn(χ)w = ε(χ, τ, dx) in the notation of Tate
from [14], and we have the Gauss sum expression

ε(χ, τ, dx) = χ(πa(χ)+n(τ))qn(τ)−δ/2
∑

u∈O×w mod πa(χ)

χ(u)τ
( u

πa(χ)+n(τ)

)
and similarly

ε(χ′, τ, dx) = χ′(πa(χ
′)+n(τ))qn(τ)−δ/2

∑
u∈O×w mod πa(χ′)

χ(u)τ
( u

πa(χ′)+n(τ)

)
.

Here, π is a uniformiser for Kn,w, q is the number of elements in the residue
field of w, δ is the exponent of w in the different of Kn, a(χ) is the exponent
of w in the conductor of χ, and n(τ) is an integer depending on the additive
character τ .
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Since we assumed that χ and χ′ are both tamely ramified at w, we have
a(χ) = a(χ′). Therefore, since we also assume that χ and χ′ are congruent
modulo MCp

, the two sums are congruent term-by-term. �

A short example. — Consider the semistable elliptic curve

E : y2 + xy + y = x3 − x2 − x− 14

which is labelled 17A1 in Cremona’s tables; it possesses good ordinary
reduction at p = 7. Its 7-division polynomial can be shown (using MAGMA)
to be irreducible over the field Q(µ7)+, which implies that ρE,7

∣∣
GQ(µ7)+

is

a residually irreducible Galois representation. As a corollary, there are no
congruences modulo the prime above 7 between f/F1 and any other modular
form of the same level.

Moreover from [5], Table 7-17A1, we also know that 1(a0) = 5.70 +
2.71 + 2.72 + . . . which implies that a0 ∈ Z7[[U (0)]]×. The system of con-
gruences an ≡ N0,n(a0) mod 7 confirms an ∈ Z7[[U (n)]]×, provided the
conjecture of Doi-Hida-Ishii holds for all n > 1. Granted this is the case,
by Theorem 1.2 one obtains∏

16i6n

Ni,n(ci)7
i

≡ 1 mod 7n+1

for all such n.
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