Let be a preprojective algebra of type , and let be the corresponding semisimple simply connected complex algebraic group. We study rigid modules in subcategories for an injective -module, and we introduce a mutation operation between complete rigid modules in . This yields cluster algebra structures on the coordinate rings of the partial flag varieties attached to .
Soit une algèbre préprojective de type , et soit le groupe algébrique complexe semi-simple et simplement connexe correspondant. Nous étudions les modules rigides des sous-catégories où désigne un -module injectif, et nous introduisons une opération de mutation sur les modules rigides complets de . Ceci conduit à des structures d’algèbre amassée sur les anneaux de coordonnées des variétés de drapeaux partiels associées à .
Keywords: Flag variety, preprojective algebra, Frobenius category, rigid module, mutation, cluster algebra, semicanonical basis
Mot clés : variété de drapeaux, algèbre préprojective, catégorie de Frobenius, module rigide, mutation, algèbre amassée, base semi-canonique
Geiß, Christof 1; Leclerc, Bernard 2; Schröer, Jan 3
@article{AIF_2008__58_3_825_0, author = {Gei{\ss}, Christof and Leclerc, Bernard and Schr\"oer, Jan}, title = {Partial flag varieties and preprojective algebras}, journal = {Annales de l'Institut Fourier}, pages = {825--876}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {58}, number = {3}, year = {2008}, doi = {10.5802/aif.2371}, mrnumber = {2427512}, zbl = {1151.16009}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2371/} }
TY - JOUR AU - Geiß, Christof AU - Leclerc, Bernard AU - Schröer, Jan TI - Partial flag varieties and preprojective algebras JO - Annales de l'Institut Fourier PY - 2008 SP - 825 EP - 876 VL - 58 IS - 3 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2371/ DO - 10.5802/aif.2371 LA - en ID - AIF_2008__58_3_825_0 ER -
%0 Journal Article %A Geiß, Christof %A Leclerc, Bernard %A Schröer, Jan %T Partial flag varieties and preprojective algebras %J Annales de l'Institut Fourier %D 2008 %P 825-876 %V 58 %N 3 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2371/ %R 10.5802/aif.2371 %G en %F AIF_2008__58_3_825_0
Geiß, Christof; Leclerc, Bernard; Schröer, Jan. Partial flag varieties and preprojective algebras. Annales de l'Institut Fourier, Volume 58 (2008) no. 3, pp. 825-876. doi : 10.5802/aif.2371. https://aif.centre-mersenne.org/articles/10.5802/aif.2371/
[1] Almost split sequences in subcategories, J. Algebra, Volume 69 (1981), pp. 426-454 | DOI | MR | Zbl
[2] Homologically finite subcategories, Representations of algebras and related topics (Kyoto, 1990) (London Math. Soc. Lecture Note Ser.), Volume 168, Cambridge Univ. Press, 1992, pp. 1-42 | MR | Zbl
[3] Representations of partially ordered sets and 1-Gorenstein Artin algebras, Proceedings, Conference on Ring Theory, Antwerp, 1978 (1979), pp. 385-433 | MR | Zbl
[4] Cluster algebras III. Upper bounds and double Bruhat cells, Duke Math. J., Volume 126 (2005), pp. 1-52 | DOI | MR
[5] Linear algebraic groups, 2nd Enlarged Edition, Springer, 1991 | MR | Zbl
[6] Groupes et algèbres de Lie, chap 4, 5, 6, Hermann, 1968 | MR | Zbl
[7] Cluster structures for 2-Calabi-Yau categories and unipotent groups (arXiv:math.RT/0701557)
[8] Tilting theory and cluster combinatorics, Adv. Math., Volume 204 (2006), pp. 572-618 | DOI | MR | Zbl
[9] Double Bruhat cells and total positivity, J. Amer. Math. Soc., Volume 12 (1999), pp. 335-380 | DOI | MR | Zbl
[10] Cluster algebras. I. Foundations, J. Amer. Math. Soc., Volume 15 (2002), pp. 497-529 | DOI | MR | Zbl
[11] Cluster algebras II. Finite type classification, Invent. Math., Volume 154 (2003), pp. 63-121 | DOI | MR | Zbl
[12] Cluster algebra structures and semicanonical bases for unipotent subgroups (arXiv:math.RT/0703039)
[13] Semicanonical bases and preprojective algebras, Ann. Sci. Ecole Norm. Sup., Volume 38 (2005), pp. 193-253 | Numdam | MR
[14] Rigid modules over preprojective algebras, Invent. Math., Volume 165 (2006), pp. 589-632 | DOI | MR
[15] Verma modules and preprojective algebras, Nagoya Math. J., Volume 182 (2006), pp. 241-258 | MR | Zbl
[16] Auslander algebras and initial seeds for cluster algebras, J. London Math. Soc., Volume 75 (2007), pp. 718-740 | DOI | MR
[17] Semicanonical bases and preprojective algebras II: A multiplication formula, Compositio Math., Volume 143 (2007), pp. 1313-1334 | DOI | MR
[18] Extension-orthogonal components of preprojective varieties, Trans. Amer. Math. Soc., Volume 357 (2005), pp. 1953-1962 | DOI | MR | Zbl
[19] Cluster algebras and Poisson geometry, Moscow Math. J., Volume 3 (2003), pp. 899-934 | MR | Zbl
[20] Triangulated categories in the representation theory of finite-dimensional algebras, London Mathematical Society Lecture Note Series 119, Cambridge University Press, Cambridge, 1988 (x+208pp) | MR | Zbl
[21] On splitting torsion theories induced by tilting modules, Comm. Alg., Volume 11 (1983), pp. 427-439 | DOI | MR | Zbl
[22] Geometric construction of crystal bases, Duke Math. J., Volume 89 (1997), pp. 9-36 | DOI | MR | Zbl
[23] On triangulated orbit categories, Doc. Math., Volume 10 (2005), pp. 551-581 (electronic) | MR | Zbl
[24] Approximations and almost split sequences in homologically finite subcategories, J. Algebra, Volume 198 (1997), pp. 135-163 | DOI | MR | Zbl
[25] Flag varieties, Travaux en cours, 63, Hermann, 2001 | Zbl
[26] Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc., Volume 3 (1990), pp. 447-498 | DOI | MR | Zbl
[27] Quivers, perverse sheaves, and quantized enveloping algebras, J. Amer. Math. Soc., Volume 4 (1991), pp. 365-421 | DOI | MR | Zbl
[28] Introduction to quantum groups, Birkhäuser, 1993 | MR | Zbl
[29] Total positivity, grassmannians and networks (arXiv:math.CO/0609764.)
[30] The preprojective algebra of a quiver, Algebras and Modules II, (Geiranger, 1996), CMS Conf. Proc., Volume 24 (1998), pp. 467-480 (AMS) | MR | Zbl
[31] Grassmannians and cluster algebras, Proc. London Math. Soc., Volume 92 (2006), pp. 345-380 | DOI | MR | Zbl
[32] Recognizing cluster algebras of finite type, Electron. J. Combin., Volume 14 (2007) no. 1, pp. Research Paper 3, 35 pp. (electronic) | MR | Zbl
Cited by Sources: