We construct a differentiable function () such that the set is a nonempty set of Hausdorff dimension . This answers a question posed by Z. Buczolich.
On construit une fonction différentiable () telle que l’ensemble est non vide et sa dimension de Hausdorff est . C’est une réponse à une question posée par Z. Buczolich.
Keywords: Denjoy–Clarkson property, gradient, Hausdorff measure, infinite game
Mot clés : propriété de Denjoy-Clarkson, gradient, mesure de Hausdorff, jeu infini
Zelený, Miroslav 1
@article{AIF_2008__58_2_405_0, author = {Zelen\'y, Miroslav}, title = {The {Denjoy-Clarkson} property with respect to {Hausdorff} measures for the gradient mapping of functions of several variables}, journal = {Annales de l'Institut Fourier}, pages = {405--428}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {58}, number = {2}, year = {2008}, doi = {10.5802/aif.2356}, mrnumber = {2410378}, zbl = {1154.26016}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2356/} }
TY - JOUR AU - Zelený, Miroslav TI - The Denjoy-Clarkson property with respect to Hausdorff measures for the gradient mapping of functions of several variables JO - Annales de l'Institut Fourier PY - 2008 SP - 405 EP - 428 VL - 58 IS - 2 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2356/ DO - 10.5802/aif.2356 LA - en ID - AIF_2008__58_2_405_0 ER -
%0 Journal Article %A Zelený, Miroslav %T The Denjoy-Clarkson property with respect to Hausdorff measures for the gradient mapping of functions of several variables %J Annales de l'Institut Fourier %D 2008 %P 405-428 %V 58 %N 2 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2356/ %R 10.5802/aif.2356 %G en %F AIF_2008__58_2_405_0
Zelený, Miroslav. The Denjoy-Clarkson property with respect to Hausdorff measures for the gradient mapping of functions of several variables. Annales de l'Institut Fourier, Volume 58 (2008) no. 2, pp. 405-428. doi : 10.5802/aif.2356. https://aif.centre-mersenne.org/articles/10.5802/aif.2356/
[1] Differentiation of real functions, CRM Monograph Series, 5, American Mathematical Society, Providence, RI, 1994 | MR | Zbl
[2] The -dimensional gradient has the 1-dimensional Denjoy-Clarkson property, Real Anal. Exchange, Volume 18 (1992-93), pp. 221-224 | MR | Zbl
[3] Another note on the gradient problem of C. E. Weil, Real Anal. Exchange, Volume 22 (1996-97), pp. 775-784 | MR | Zbl
[4] Solution to the gradient problem of C. E. Weil, Rev. Mat. Iberoamericana, Volume 21 (2005), pp. 889-910 | EuDML | MR | Zbl
[5] A property of derivatives, Bull. Amer. Math. Soc., Volume 53 (1947), pp. 124-125 | DOI | MR | Zbl
[6] Sur une proprieté des fonctions dérivées, Enseignement Math., Volume 18 (1916), pp. 320-328 | JFM
[7] Infinite games, Banach space geometry and the eikonal equation, Proc. Lond. Math. Soc. (3), Volume 95 (2007) no. 1, pp. 49-68 | DOI | MR | Zbl
[8] General Topology, Heldermann Verlag, Berlin, 1989 | MR | Zbl
[9] A note on the gradient problem, Real Anal. Exchange, Volume 22 (1996-97), pp. 225-235 | MR | Zbl
[10] The Darboux property for gradients, Real Anal. Exchange, Volume 22 (1996/97) no. 1, pp. 167-173 | MR | Zbl
[11] A note on Buczolich’s solution of the Weil gradient problem: a construction based on an infinite game, Acta Math. Hungar., Volume 113 (2006), pp. 145-158 | DOI | Zbl
[12] Geometry of sets and measures in Euclidean spaces, Cambridge Studies in Advanced Mathematics, Volume 44, Cambridge University Press, Cambridge, 1995 | MR | Zbl
[13] Query 1, Real Anal. Exchange, Volume 16 (1990-91), pp. 373
Cited by Sources: