On construit un opérateur d’extension linéaire et continu pour les champs de Whitney de classe (p fini) sur un sous-ensemble fermé o-minimal de . La construction, différente de celle de Whitney, est basée sur des propriétés géométriques spéciales des ensembles o-minimaux, étudiées avant par K. Kurdyka et l’auteur.
A continuous linear extension operator, different from Whitney’s, for -Whitney fields (p finite) on a closed o-minimal subset of is constructed. The construction is based on special geometrical properties of o-minimal sets earlier studied by K. Kurdyka with the author.
Keywords: Whitney field, extension operator, o-minimal structure, subanalytic set.
Mot clés : Champ de Whitney, opérateur d’extension, structure o-minimale, ensemble sous-analytique.
Pawłucki, Wiesław 1
@article{AIF_2008__58_2_383_0, author = {Paw{\l}ucki, Wies{\l}aw}, title = {A linear extension operator for {Whitney} fields on closed o-minimal sets}, journal = {Annales de l'Institut Fourier}, pages = {383--404}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {58}, number = {2}, year = {2008}, doi = {10.5802/aif.2355}, mrnumber = {2410377}, zbl = {1168.14040}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2355/} }
TY - JOUR AU - Pawłucki, Wiesław TI - A linear extension operator for Whitney fields on closed o-minimal sets JO - Annales de l'Institut Fourier PY - 2008 SP - 383 EP - 404 VL - 58 IS - 2 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2355/ DO - 10.5802/aif.2355 LA - en ID - AIF_2008__58_2_383_0 ER -
%0 Journal Article %A Pawłucki, Wiesław %T A linear extension operator for Whitney fields on closed o-minimal sets %J Annales de l'Institut Fourier %D 2008 %P 383-404 %V 58 %N 2 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2355/ %R 10.5802/aif.2355 %G en %F AIF_2008__58_2_383_0
Pawłucki, Wiesław. A linear extension operator for Whitney fields on closed o-minimal sets. Annales de l'Institut Fourier, Tome 58 (2008) no. 2, pp. 383-404. doi : 10.5802/aif.2355. https://aif.centre-mersenne.org/articles/10.5802/aif.2355/
[1] An Introduction to O-minimal Geometry, Istituti Editoriali e Poligrafici Internazionali, Pisa-Roma, 2000
[2] Tame Topology and O-minimal Structures, Cambridge University Press, 1998 | MR | Zbl
[3] Geometric categories and o-minimal structures, Duke Math. J., Volume 84 (1996), pp. 497-540 | DOI | MR | Zbl
[4] Étude de quelques algèbres tayloriennes, J. Anal. Math., Volume 6 (1958), pp. 1-124 | DOI | MR | Zbl
[5] On a subanalytic stratification satisfying a Whitney property with exponent 1, Proc. Conference Real Algebraic Geometry (1991), pp. 316-322 (LNM 1524) | MR | Zbl
[6] Subanalytic version of Whitney’s extension theorem, Studia Math., Volume 124 (3) (1997), pp. 269-280 | Zbl
[7] Intégration des fonctions sous-analytiques et volumes des sous-ensembles sous-analytiques, Ann. Inst. Fourier, Grenoble, Volume 68,3 (1998), pp. 755-767 | DOI | Numdam | MR | Zbl
[8] Ideals of Differentiable Functions, Oxford University Press, 1966 | MR | Zbl
[9] Lipschitz stratification of subanalytic sets, Ann. Scient. Ec. Norm. Sup., Volume 27 (1994), pp. 661-696 | Numdam | MR | Zbl
[10] A decomposition of a set definable in an o-minimal structure into perfectly situated sets, Ann. Polon. Math., Volume LXXIX.2 (2002), pp. 171-184 | DOI | Zbl
[11] Singular Integrals and Differentiability Properties of Functions, Princeton University Press, 1970 | MR | Zbl
[12] Idéaux des Fonctions Différentiables, Springer, 1972 | MR | Zbl
[13] Analytic extensions of differentiable functions defined in closed sets, Trans. Am. Math. Soc., Volume 36 (1934), pp. 63-89 | DOI | MR | Zbl
Cité par Sources :