Sur la topologie de l’espace des opérateurs pseudodifférentiels inversibles d’ordre 0
[On the topology of the space of invertible pseudodifferential operators of order 0]
Annales de l'Institut Fourier, Volume 58 (2008) no. 1, pp. 29-62.

The homotopy groups of the (stabilized) group G 0 (X) of invertible pseudodifferential operators of order zero acting on a smooth compact manifold X are given in terms of the K-theory of the cosphere bundle S * X. At the same time, it is shown that the subgroup of invertible compact perturbations of the identity is weakly retractible in G 0 (X). The results are also adapted to the case of suspended operators. This gives applications in index theory and for the residue determinant of Simon Scott.

Les groupes d’homotopie du groupe (stabilisé) G 0 (X) des opérateurs pseudodifférentiels inversibles d’ordre zéro agissant sur une variété compacte sans bord X sont calculés en termes de la K-théorie du fibré cosphérique S * X. Du même coup, on montre que le sous-groupe des perturbations compactes inversibles de l’identité est faiblement rétractile dans G 0 (X). Les résultats sont aussi adaptés au cas des opérateurs suspendus. Des applications à la théorie de l’indice et pour le déterminant résiduel de Simon Scott sont aussi données.

DOI: 10.5802/aif.2343
Classification: 58B05, 58B15
Keywords: opérateurs pseudodifférentiels, groupes d’homotopie, $K$-théorie, déterminant résiduel

Rochon, Frédéric 1

1 State University of New York Department of Mathematics Stony Brook (USA)
@article{AIF_2008__58_1_29_0,
     author = {Rochon, Fr\'ed\'eric},
     title = {Sur la topologie de l{\textquoteright}espace des op\'erateurs pseudodiff\'erentiels inversibles d{\textquoteright}ordre 0},
     journal = {Annales de l'Institut Fourier},
     pages = {29--62},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {58},
     number = {1},
     year = {2008},
     doi = {10.5802/aif.2343},
     mrnumber = {2401215},
     zbl = {1154.58014},
     language = {fr},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2343/}
}
TY  - JOUR
AU  - Rochon, Frédéric
TI  - Sur la topologie de l’espace des opérateurs pseudodifférentiels inversibles d’ordre 0
JO  - Annales de l'Institut Fourier
PY  - 2008
SP  - 29
EP  - 62
VL  - 58
IS  - 1
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2343/
DO  - 10.5802/aif.2343
LA  - fr
ID  - AIF_2008__58_1_29_0
ER  - 
%0 Journal Article
%A Rochon, Frédéric
%T Sur la topologie de l’espace des opérateurs pseudodifférentiels inversibles d’ordre 0
%J Annales de l'Institut Fourier
%D 2008
%P 29-62
%V 58
%N 1
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.2343/
%R 10.5802/aif.2343
%G fr
%F AIF_2008__58_1_29_0
Rochon, Frédéric. Sur la topologie de l’espace des opérateurs pseudodifférentiels inversibles d’ordre 0. Annales de l'Institut Fourier, Volume 58 (2008) no. 1, pp. 29-62. doi : 10.5802/aif.2343. https://aif.centre-mersenne.org/articles/10.5802/aif.2343/

[1] Atiyah, M. F. K-theory, Benjamin, 1967 | MR | Zbl

[2] Atiyah, M. F.; Patodi, V. K.; Singer, I. M. Spectral asymmetry and Riemann geometry, I, Math. Proc. Cambridge Philos. Soc, Volume 77 (1975), pp. 43-69 | DOI | MR | Zbl

[3] Atiyah, M. F.; Patodi, V. K.; Singer, I. M. Spectral asymmetry and Riemann geometry, III, Math. Proc. Cambridge Philos. Soc, Volume 79 (1976), pp. 71-99 | DOI | MR | Zbl

[4] Atiyah, M. F.; Singer, I. M. The index of elliptic operators : I, Ann. of Math., Volume 87 (1968), pp. 484-530 | DOI | MR | Zbl

[5] Atiyah, M. F.; Singer, I. M. The index of elliptic operators. IV, Ann. of Math. (2), Volume 93 (1971), pp. 119-138 | DOI | MR | Zbl

[6] Bott, R.; Tu, L. W. Differential forms in algebraic topology, Springer-Verlag, Berlin, 1982 no. 82 | MR | Zbl

[7] Friedlander, L.; Guillemin, V. Determinants of zeroth order operators (2006) (preprint, math.SP/0601743)

[8] Gilkey, P. B. The residue of the global η function at the origin, Adv. in Math., Volume 40 (1981) no. 3, pp. 290-307 | DOI | MR | Zbl

[9] Guillemin, V. A new proof of Weyl’s formula on the asymptotic distribution of eigenvalues, Adv. Math., Volume 102 (1985), pp. 184-201 | DOI | Zbl

[10] Kontsevich, M.; Vishik, S. Geometry of determinants of elliptic operators, Func. Anal. on the Eve of the XXI century, Vol I, Pogress in mathematics, Volume 131 (1994), pp. 173-197 | MR | Zbl

[11] Lauter, R.; Moroianu, S. Fredholm theory for degenerate pseudodifferential operators on manifold with fibred boundaries, Comm. Partial Differential Equations, Volume 26 (2001), pp. 233-283 | DOI | MR | Zbl

[12] Lauter, R.; Moroianu, S. Homology of pseudodifferential operators on manifolds with fibered cusps, T. Am. Soc., Volume 355 (2003), pp. 3009-3046 | DOI | MR | Zbl

[13] Lauter, R.; Moroianu, S. An index formula on manifolds with fibered cusp ends, J. Geom. Analysis, Volume 15 (2005), pp. 261-283 | MR | Zbl

[14] Leichtnam, E.; Mazzeo, R.; Piazza, P. The index of Dirac operators on manifolds with fibred boundary (à paraître dans les Proceedings of the Joint BeNeLuxFra Conference in Mathematics, Ghent, May 20-22, 2005, Bulletin of the Belgian Mathematical Society – Simon Stevin) | Zbl

[15] Lesch, M.; Moscovici, H.; Pflaum, M. Relative pairing in cyclic cohomology and divisor flows (2006) (preprint, math.KT/0603500)

[16] Lescure, J.-M.; Paycha, S. Uniqueness of multiplicative determinants on elliptic pseudodifferential operators (à paraître dans les Proceedings of the London Mathematical Society) | Zbl

[17] Mazzeo, R.; Melrose, R. B. Pseudodifferential operators on manifolds with fibred boundaries, Asian J. Math., Volume 2 (1999) no. 4, pp. 833-866 | MR | Zbl

[18] Melrose, R. B. Lectures on microlocal analysis (Fall 2005, http ://www-math.mit.edu/ rbm/18.157-F05.html)

[19] Melrose, R. B. The eta invariant and families of pseudodifferential operators, Math. Res. Lett., Volume 2 (1995) no. 5, pp. 541-561 | MR | Zbl

[20] Melrose, R. B. Geometric scattering theory, Cambridge University Press, Cambridge, 1995 | MR | Zbl

[21] Melrose, R. B.; Nistor, V. Homology of pseudodifferential operators I. Manifold with boundary (Preprint)

[22] Melrose, R. B.; Rochon, F. Boundaries, eta invariant and the determinant bundle (2006) (preprint, math.DG/0607480)

[23] Melrose, R. B.; Rochon, F. Index in K-theory of families of fibred cusp operators, K-theory, Volume 37 (2006), pp. 25-104 | DOI | MR | Zbl

[24] Melrose, R. B.; Rochon, F. Periodicity and the determinant bundle (2006) (math.DG/0606382, à paraître dans Commun. Math. Phys.) | Zbl

[25] Moroianu, S. Fibered cusp versus d-index theory (à paraître dans Rendiconti del Seminario Matematico della Università di Padova) | Numdam | Zbl

[26] Moroianu, S. K-theory of suspended pseudo-differential operators, K-theory, Volume 28 (2003), pp. 167-181 | DOI | MR | Zbl

[27] Moroianu, S. Homology of adiabatic pseudo-differential operators, Nagoya Math. J, Volume 175 (2004), pp. 171-221 | MR | Zbl

[28] Nye, T. M. W.; Singer, M. A. An L 2 -index theorem for Dirac operators on 𝕊 1 × 3 , Journal of Functional Analysis, Volume 177 (2000), pp. 203-218 | DOI | MR | Zbl

[29] Okikiolu, K. The multiplicative anomaly for determinants of elliptic operators, Duke Math. J., Volume 79 (1995), pp. 723-750 | DOI | MR | Zbl

[30] Paycha, S.; Scott, S. A Laurent expansion for regularized integrals of holomorphic symbols (preprint, à paraître dans Geom. and Funct. Anal) | Zbl

[31] Rochon, F. Bott periodicity for fibred cusp operators, J. Geom. Anal., Volume 15 (2005) no. 4, pp. 685-722 | MR | Zbl

[32] Scott, S. The residue determinant, Comm. Part. Diff. Eqn., Volume 30 (2005), pp. 483-507 | DOI | MR | Zbl

[33] Seeley, R. T. Complex powers of an elliptic operator, (Proc. Sympos. Pure Math., Vol. X) Amer. Math. Soc. (1966), pp. 288-307 | MR | Zbl

[34] Steenrod, N. The topology of fibre bundles, Princeton University Press, New Jersey, 1999 | MR | Zbl

[35] Wodzicki, M. Spectral asymmetry and zeta functions, Invent. math., Volume 66 (1982), pp. 115-135 | DOI | MR | Zbl

[36] Wodzicki, M. Local invariants of spectral asymmetry, Invent. math., Volume 75 (1984), pp. 143-177 | DOI | MR | Zbl

[37] Wodzicki, M. Non-commutative residue, Chapter I. Fundamentals, K-theory, Arithmetic and Geometry Springer Lecture notes, Volume 1289 (1987), pp. 320-399 | DOI | MR | Zbl

Cited by Sources: