Sur la topologie de l’espace des opérateurs pseudodifférentiels inversibles d’ordre 0
Annales de l'Institut Fourier, Tome 58 (2008) no. 1, pp. 29-62.

Les groupes d’homotopie du groupe (stabilisé) G 0 (X) des opérateurs pseudodifférentiels inversibles d’ordre zéro agissant sur une variété compacte sans bord X sont calculés en termes de la K-théorie du fibré cosphérique S * X. Du même coup, on montre que le sous-groupe des perturbations compactes inversibles de l’identité est faiblement rétractile dans G 0 (X). Les résultats sont aussi adaptés au cas des opérateurs suspendus. Des applications à la théorie de l’indice et pour le déterminant résiduel de Simon Scott sont aussi données.

The homotopy groups of the (stabilized) group G 0 (X) of invertible pseudodifferential operators of order zero acting on a smooth compact manifold X are given in terms of the K-theory of the cosphere bundle S * X. At the same time, it is shown that the subgroup of invertible compact perturbations of the identity is weakly retractible in G 0 (X). The results are also adapted to the case of suspended operators. This gives applications in index theory and for the residue determinant of Simon Scott.

DOI : 10.5802/aif.2343
Classification : 58B05, 58B15
Mots clés : opérateurs pseudodifférentiels, groupes d’homotopie, $K$-théorie, déterminant résiduel

Rochon, Frédéric 1

1 State University of New York Department of Mathematics Stony Brook (USA)
@article{AIF_2008__58_1_29_0,
     author = {Rochon, Fr\'ed\'eric},
     title = {Sur la topologie de l{\textquoteright}espace des op\'erateurs pseudodiff\'erentiels inversibles d{\textquoteright}ordre 0},
     journal = {Annales de l'Institut Fourier},
     pages = {29--62},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {58},
     number = {1},
     year = {2008},
     doi = {10.5802/aif.2343},
     mrnumber = {2401215},
     zbl = {1154.58014},
     language = {fr},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2343/}
}
TY  - JOUR
AU  - Rochon, Frédéric
TI  - Sur la topologie de l’espace des opérateurs pseudodifférentiels inversibles d’ordre 0
JO  - Annales de l'Institut Fourier
PY  - 2008
SP  - 29
EP  - 62
VL  - 58
IS  - 1
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2343/
DO  - 10.5802/aif.2343
LA  - fr
ID  - AIF_2008__58_1_29_0
ER  - 
%0 Journal Article
%A Rochon, Frédéric
%T Sur la topologie de l’espace des opérateurs pseudodifférentiels inversibles d’ordre 0
%J Annales de l'Institut Fourier
%D 2008
%P 29-62
%V 58
%N 1
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.2343/
%R 10.5802/aif.2343
%G fr
%F AIF_2008__58_1_29_0
Rochon, Frédéric. Sur la topologie de l’espace des opérateurs pseudodifférentiels inversibles d’ordre 0. Annales de l'Institut Fourier, Tome 58 (2008) no. 1, pp. 29-62. doi : 10.5802/aif.2343. https://aif.centre-mersenne.org/articles/10.5802/aif.2343/

[1] Atiyah, M. F. K-theory, Benjamin, 1967 | MR | Zbl

[2] Atiyah, M. F.; Patodi, V. K.; Singer, I. M. Spectral asymmetry and Riemann geometry, I, Math. Proc. Cambridge Philos. Soc, Volume 77 (1975), pp. 43-69 | DOI | MR | Zbl

[3] Atiyah, M. F.; Patodi, V. K.; Singer, I. M. Spectral asymmetry and Riemann geometry, III, Math. Proc. Cambridge Philos. Soc, Volume 79 (1976), pp. 71-99 | DOI | MR | Zbl

[4] Atiyah, M. F.; Singer, I. M. The index of elliptic operators : I, Ann. of Math., Volume 87 (1968), pp. 484-530 | DOI | MR | Zbl

[5] Atiyah, M. F.; Singer, I. M. The index of elliptic operators. IV, Ann. of Math. (2), Volume 93 (1971), pp. 119-138 | DOI | MR | Zbl

[6] Bott, R.; Tu, L. W. Differential forms in algebraic topology, Springer-Verlag, Berlin, 1982 no. 82 | MR | Zbl

[7] Friedlander, L.; Guillemin, V. Determinants of zeroth order operators (2006) (preprint, math.SP/0601743)

[8] Gilkey, P. B. The residue of the global η function at the origin, Adv. in Math., Volume 40 (1981) no. 3, pp. 290-307 | DOI | MR | Zbl

[9] Guillemin, V. A new proof of Weyl’s formula on the asymptotic distribution of eigenvalues, Adv. Math., Volume 102 (1985), pp. 184-201 | DOI | Zbl

[10] Kontsevich, M.; Vishik, S. Geometry of determinants of elliptic operators, Func. Anal. on the Eve of the XXI century, Vol I, Pogress in mathematics, Volume 131 (1994), pp. 173-197 | MR | Zbl

[11] Lauter, R.; Moroianu, S. Fredholm theory for degenerate pseudodifferential operators on manifold with fibred boundaries, Comm. Partial Differential Equations, Volume 26 (2001), pp. 233-283 | DOI | MR | Zbl

[12] Lauter, R.; Moroianu, S. Homology of pseudodifferential operators on manifolds with fibered cusps, T. Am. Soc., Volume 355 (2003), pp. 3009-3046 | DOI | MR | Zbl

[13] Lauter, R.; Moroianu, S. An index formula on manifolds with fibered cusp ends, J. Geom. Analysis, Volume 15 (2005), pp. 261-283 | MR | Zbl

[14] Leichtnam, E.; Mazzeo, R.; Piazza, P. The index of Dirac operators on manifolds with fibred boundary (à paraître dans les Proceedings of the Joint BeNeLuxFra Conference in Mathematics, Ghent, May 20-22, 2005, Bulletin of the Belgian Mathematical Society – Simon Stevin) | Zbl

[15] Lesch, M.; Moscovici, H.; Pflaum, M. Relative pairing in cyclic cohomology and divisor flows (2006) (preprint, math.KT/0603500)

[16] Lescure, J.-M.; Paycha, S. Uniqueness of multiplicative determinants on elliptic pseudodifferential operators (à paraître dans les Proceedings of the London Mathematical Society) | Zbl

[17] Mazzeo, R.; Melrose, R. B. Pseudodifferential operators on manifolds with fibred boundaries, Asian J. Math., Volume 2 (1999) no. 4, pp. 833-866 | MR | Zbl

[18] Melrose, R. B. Lectures on microlocal analysis (Fall 2005, http ://www-math.mit.edu/ rbm/18.157-F05.html)

[19] Melrose, R. B. The eta invariant and families of pseudodifferential operators, Math. Res. Lett., Volume 2 (1995) no. 5, pp. 541-561 | MR | Zbl

[20] Melrose, R. B. Geometric scattering theory, Cambridge University Press, Cambridge, 1995 | MR | Zbl

[21] Melrose, R. B.; Nistor, V. Homology of pseudodifferential operators I. Manifold with boundary (Preprint)

[22] Melrose, R. B.; Rochon, F. Boundaries, eta invariant and the determinant bundle (2006) (preprint, math.DG/0607480)

[23] Melrose, R. B.; Rochon, F. Index in K-theory of families of fibred cusp operators, K-theory, Volume 37 (2006), pp. 25-104 | DOI | MR | Zbl

[24] Melrose, R. B.; Rochon, F. Periodicity and the determinant bundle (2006) (math.DG/0606382, à paraître dans Commun. Math. Phys.) | Zbl

[25] Moroianu, S. Fibered cusp versus d-index theory (à paraître dans Rendiconti del Seminario Matematico della Università di Padova) | Numdam | Zbl

[26] Moroianu, S. K-theory of suspended pseudo-differential operators, K-theory, Volume 28 (2003), pp. 167-181 | DOI | MR | Zbl

[27] Moroianu, S. Homology of adiabatic pseudo-differential operators, Nagoya Math. J, Volume 175 (2004), pp. 171-221 | MR | Zbl

[28] Nye, T. M. W.; Singer, M. A. An L 2 -index theorem for Dirac operators on 𝕊 1 × 3 , Journal of Functional Analysis, Volume 177 (2000), pp. 203-218 | DOI | MR | Zbl

[29] Okikiolu, K. The multiplicative anomaly for determinants of elliptic operators, Duke Math. J., Volume 79 (1995), pp. 723-750 | DOI | MR | Zbl

[30] Paycha, S.; Scott, S. A Laurent expansion for regularized integrals of holomorphic symbols (preprint, à paraître dans Geom. and Funct. Anal) | Zbl

[31] Rochon, F. Bott periodicity for fibred cusp operators, J. Geom. Anal., Volume 15 (2005) no. 4, pp. 685-722 | MR | Zbl

[32] Scott, S. The residue determinant, Comm. Part. Diff. Eqn., Volume 30 (2005), pp. 483-507 | DOI | MR | Zbl

[33] Seeley, R. T. Complex powers of an elliptic operator, (Proc. Sympos. Pure Math., Vol. X) Amer. Math. Soc. (1966), pp. 288-307 | MR | Zbl

[34] Steenrod, N. The topology of fibre bundles, Princeton University Press, New Jersey, 1999 | MR | Zbl

[35] Wodzicki, M. Spectral asymmetry and zeta functions, Invent. math., Volume 66 (1982), pp. 115-135 | DOI | MR | Zbl

[36] Wodzicki, M. Local invariants of spectral asymmetry, Invent. math., Volume 75 (1984), pp. 143-177 | DOI | MR | Zbl

[37] Wodzicki, M. Non-commutative residue, Chapter I. Fundamentals, K-theory, Arithmetic and Geometry Springer Lecture notes, Volume 1289 (1987), pp. 320-399 | DOI | MR | Zbl

Cité par Sources :