Strong diamagnetism for general domains and application
Annales de l'Institut Fourier, Volume 57 (2007) no. 7, pp. 2389-2400.

We consider the Neumann Laplacian with constant magnetic field on a regular domain in 2 . Let B be the strength of the magnetic field and let λ 1 (B) be the first eigenvalue of this Laplacian. It is proved that Bλ 1 (B) is monotone increasing for large B. Together with previous results of the authors, this implies the coincidence of all the “third” critical fields for strongly type 2 superconductors.

Nous considérons le Laplacien de Neumann avec champ magnétique constant dans un domaine régulier de 2 . Si B désigne l’intensité de ce champ et si λ 1 (B) désigne la première valeur propre de ce Laplacien, il est démontré que λ 1 est une fonction monotone croissante de B pour B grand. En combinant avec des résultats antérieurs des auteurs, ceci implique la coïncidence de toutes les définitions raisonables du troisième champ critique pour les matériaux supraconducteurs de type II.

DOI: 10.5802/aif.2337
Classification: 35P15,  35J55,  82D55
Keywords: Spectral theory, bottom of the spectrum, Neumann condition, superconductivity
Fournais, Soeren 1; Helffer, Bernard 2

1 Université Paris-Sud Laboratoire de Mathématiques UMR CNRS 8628 Bât 425 91405 Orsay Cedex (France) and University of Aarhus Department of Mathematical Sciences Ny Munkegade, Building 1530 8000 Aarhus C (Denmark)
2 Université Paris-Sud Laboratoire de Mathématiques UMR CNRS 8628 Bât 425 91405 Orsay Cedex (France)
@article{AIF_2007__57_7_2389_0,
     author = {Fournais, Soeren and Helffer, Bernard},
     title = {Strong diamagnetism for general domains and application},
     journal = {Annales de l'Institut Fourier},
     pages = {2389--2400},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {57},
     number = {7},
     year = {2007},
     doi = {10.5802/aif.2337},
     mrnumber = {2394546},
     zbl = {1133.35073},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2337/}
}
TY  - JOUR
AU  - Fournais, Soeren
AU  - Helffer, Bernard
TI  - Strong diamagnetism for general domains and application
JO  - Annales de l'Institut Fourier
PY  - 2007
DA  - 2007///
SP  - 2389
EP  - 2400
VL  - 57
IS  - 7
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2337/
UR  - https://www.ams.org/mathscinet-getitem?mr=2394546
UR  - https://zbmath.org/?q=an%3A1133.35073
UR  - https://doi.org/10.5802/aif.2337
DO  - 10.5802/aif.2337
LA  - en
ID  - AIF_2007__57_7_2389_0
ER  - 
%0 Journal Article
%A Fournais, Soeren
%A Helffer, Bernard
%T Strong diamagnetism for general domains and application
%J Annales de l'Institut Fourier
%D 2007
%P 2389-2400
%V 57
%N 7
%I Association des Annales de l’institut Fourier
%U https://doi.org/10.5802/aif.2337
%R 10.5802/aif.2337
%G en
%F AIF_2007__57_7_2389_0
Fournais, Soeren; Helffer, Bernard. Strong diamagnetism for general domains and application. Annales de l'Institut Fourier, Volume 57 (2007) no. 7, pp. 2389-2400. doi : 10.5802/aif.2337. https://aif.centre-mersenne.org/articles/10.5802/aif.2337/

[1] Agmon, Shmuel Lectures on exponential decay of solutions of second-order elliptic equations: bounds on eigenfunctions of N -body Schrödinger operators, Mathematical Notes, 29, Princeton University Press, Princeton, NJ, 1982 | MR | Zbl

[2] Bauman, P.; Phillips, D.; Tang, Q. Stable nucleation for the Ginzburg-Landau system with an applied magnetic field, Arch. Rational Mech. Anal., Volume 142 (1998) no. 1, pp. 1-43 | DOI | MR | Zbl

[3] Bernoff, Andrew; Sternberg, Peter Onset of superconductivity in decreasing fields for general domains, J. Math. Phys., Volume 39 (1998) no. 3, pp. 1272-1284 | DOI | MR | Zbl

[4] Bonnaillie, Virginie On the fundamental state for a Schrödinger operator with magnetic field in a domain with corners, Asymptotic Anal, Volume 41 (2005) no. 3-4, pp. 215-258 | MR | Zbl

[5] Bonnaillie-Noël, Virginie; Dauge, Monique Asymptotics for the low-lying eigenstates of the Schrödinger operator with magnetic field near corners, Ann. Henri Poincaré, Volume 7 (2006) no. 5, pp. 899-931 | DOI | MR | Zbl

[6] Bonnaillie-Noël, Virginie; Soeren, Fournais Superconductivity in domains with corners (In preparation)

[7] Erdős, László Dia- and paramagnetism for nonhomogeneous magnetic fields, J. Math. Phys., Volume 38 (1997) no. 3, pp. 1289-1317 | DOI | MR | Zbl

[8] Erdős, László Spectral shift and multiplicity of the first eigenvalue of the magnetic Schrödinger operator in two dimensions, Ann. Inst. Fourier (Grenoble), Volume 52 (2002) no. 6, pp. 1833-1874 | DOI | Numdam | MR | Zbl

[9] Fournais, S.; Helffer, B. On the third critical field in Ginzburg-Landau theory, Comm. Math. Phys., Volume 266 (2006) no. 1, pp. 153-196 | DOI | MR | Zbl

[10] Giorgi, T.; Phillips, D. The breakdown of superconductivity due to strong fields for the Ginzburg-Landau model, SIAM Rev., Volume 44 (2002) no. 2, p. 237-256 (electronic) Reprinted from SIAM J. Math. Anal. 30 (1999), no. 2, 341–359 [MR 2002b:35235] | DOI | MR | Zbl

[11] Helffer, Bernard; Morame, Abderemane Magnetic bottles in connection with superconductivity, J. Funct. Anal., Volume 185 (2001) no. 2, pp. 604-680 | DOI | MR | Zbl

[12] Helffer, Bernard; Pan, Xing-Bin Upper critical field and location of surface nucleation of superconductivity, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 20 (2003) no. 1, pp. 145-181 | DOI | EuDML | Numdam | MR | Zbl

[13] Loss, Michael; Thaller, Bernd Optimal heat kernel estimates for Schrödinger operators with magnetic fields in two dimensions, Comm. Math. Phys., Volume 186 (1997) no. 1, pp. 95-107 | DOI | MR | Zbl

[14] Lu, Kening; Pan, Xing-Bin Eigenvalue problems of Ginzburg-Landau operator in bounded domains, J. Math. Phys., Volume 40 (1999) no. 6, pp. 2647-2670 | DOI | MR | Zbl

[15] Lu, Kening; Pan, Xing-Bin Estimates of the upper critical field for the Ginzburg-Landau equations of superconductivity, Phys. D, Volume 127 (1999) no. 1-2, pp. 73-104 | DOI | MR | Zbl

[16] Lu, Kening; Pan, Xing-Bin Gauge invariant eigenvalue problems in R 2 and in R + 2 , Trans. Amer. Math. Soc., Volume 352 (2000) no. 3, pp. 1247-1276 | DOI | MR | Zbl

[17] Pan, Xing-Bin Superconductivity near critical temperature, J. Math. Phys., Volume 44 (2003) no. 6, pp. 2639-2678 | DOI | MR | Zbl

[18] del Pino, Manuel; Felmer, Patricio L.; Sternberg, Peter Boundary concentration for eigenvalue problems related to the onset of superconductivity, Comm. Math. Phys., Volume 210 (2000) no. 2, pp. 413-446 | DOI | MR | Zbl

[19] Soeren, Fournais; Helffer, Bernard Accurate eigenvalue asymptotics for the magnetic Neumann Laplacian, Ann. Inst. Fourier (Grenoble), Volume 56 (2006) no. 1, pp. 1-67 | DOI | EuDML | Numdam | MR | Zbl

Cited by Sources: