We consider the Neumann Laplacian with constant magnetic field on a regular domain in . Let be the strength of the magnetic field and let be the first eigenvalue of this Laplacian. It is proved that is monotone increasing for large . Together with previous results of the authors, this implies the coincidence of all the “third” critical fields for strongly type 2 superconductors.
Nous considérons le Laplacien de Neumann avec champ magnétique constant dans un domaine régulier de . Si désigne l’intensité de ce champ et si désigne la première valeur propre de ce Laplacien, il est démontré que est une fonction monotone croissante de pour grand. En combinant avec des résultats antérieurs des auteurs, ceci implique la coïncidence de toutes les définitions raisonables du troisième champ critique pour les matériaux supraconducteurs de type II.
Keywords: Spectral theory, bottom of the spectrum, Neumann condition, superconductivity
Mot clés : théorie spectrale, bas du spectre, condition de Neumann, supraconductivité
Fournais, Soeren 1; Helffer, Bernard 2
@article{AIF_2007__57_7_2389_0, author = {Fournais, Soeren and Helffer, Bernard}, title = {Strong diamagnetism for general domains and application}, journal = {Annales de l'Institut Fourier}, pages = {2389--2400}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {57}, number = {7}, year = {2007}, doi = {10.5802/aif.2337}, mrnumber = {2394546}, zbl = {1133.35073}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2337/} }
TY - JOUR AU - Fournais, Soeren AU - Helffer, Bernard TI - Strong diamagnetism for general domains and application JO - Annales de l'Institut Fourier PY - 2007 SP - 2389 EP - 2400 VL - 57 IS - 7 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2337/ DO - 10.5802/aif.2337 LA - en ID - AIF_2007__57_7_2389_0 ER -
%0 Journal Article %A Fournais, Soeren %A Helffer, Bernard %T Strong diamagnetism for general domains and application %J Annales de l'Institut Fourier %D 2007 %P 2389-2400 %V 57 %N 7 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2337/ %R 10.5802/aif.2337 %G en %F AIF_2007__57_7_2389_0
Fournais, Soeren; Helffer, Bernard. Strong diamagnetism for general domains and application. Annales de l'Institut Fourier, Volume 57 (2007) no. 7, pp. 2389-2400. doi : 10.5802/aif.2337. https://aif.centre-mersenne.org/articles/10.5802/aif.2337/
[1] Lectures on exponential decay of solutions of second-order elliptic equations: bounds on eigenfunctions of -body Schrödinger operators, Mathematical Notes, 29, Princeton University Press, Princeton, NJ, 1982 | MR | Zbl
[2] Stable nucleation for the Ginzburg-Landau system with an applied magnetic field, Arch. Rational Mech. Anal., Volume 142 (1998) no. 1, pp. 1-43 | DOI | MR | Zbl
[3] Onset of superconductivity in decreasing fields for general domains, J. Math. Phys., Volume 39 (1998) no. 3, pp. 1272-1284 | DOI | MR | Zbl
[4] On the fundamental state for a Schrödinger operator with magnetic field in a domain with corners, Asymptotic Anal, Volume 41 (2005) no. 3-4, pp. 215-258 | MR | Zbl
[5] Asymptotics for the low-lying eigenstates of the Schrödinger operator with magnetic field near corners, Ann. Henri Poincaré, Volume 7 (2006) no. 5, pp. 899-931 | DOI | MR | Zbl
[6] Superconductivity in domains with corners (In preparation)
[7] Dia- and paramagnetism for nonhomogeneous magnetic fields, J. Math. Phys., Volume 38 (1997) no. 3, pp. 1289-1317 | DOI | MR | Zbl
[8] Spectral shift and multiplicity of the first eigenvalue of the magnetic Schrödinger operator in two dimensions, Ann. Inst. Fourier (Grenoble), Volume 52 (2002) no. 6, pp. 1833-1874 | DOI | Numdam | MR | Zbl
[9] On the third critical field in Ginzburg-Landau theory, Comm. Math. Phys., Volume 266 (2006) no. 1, pp. 153-196 | DOI | MR | Zbl
[10] The breakdown of superconductivity due to strong fields for the Ginzburg-Landau model, SIAM Rev., Volume 44 (2002) no. 2, p. 237-256 (electronic) Reprinted from SIAM J. Math. Anal. 30 (1999), no. 2, 341–359 [MR 2002b:35235] | DOI | MR | Zbl
[11] Magnetic bottles in connection with superconductivity, J. Funct. Anal., Volume 185 (2001) no. 2, pp. 604-680 | DOI | MR | Zbl
[12] Upper critical field and location of surface nucleation of superconductivity, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 20 (2003) no. 1, pp. 145-181 | DOI | EuDML | Numdam | MR | Zbl
[13] Optimal heat kernel estimates for Schrödinger operators with magnetic fields in two dimensions, Comm. Math. Phys., Volume 186 (1997) no. 1, pp. 95-107 | DOI | MR | Zbl
[14] Eigenvalue problems of Ginzburg-Landau operator in bounded domains, J. Math. Phys., Volume 40 (1999) no. 6, pp. 2647-2670 | DOI | MR | Zbl
[15] Estimates of the upper critical field for the Ginzburg-Landau equations of superconductivity, Phys. D, Volume 127 (1999) no. 1-2, pp. 73-104 | DOI | MR | Zbl
[16] Gauge invariant eigenvalue problems in and in , Trans. Amer. Math. Soc., Volume 352 (2000) no. 3, pp. 1247-1276 | DOI | MR | Zbl
[17] Superconductivity near critical temperature, J. Math. Phys., Volume 44 (2003) no. 6, pp. 2639-2678 | DOI | MR | Zbl
[18] Boundary concentration for eigenvalue problems related to the onset of superconductivity, Comm. Math. Phys., Volume 210 (2000) no. 2, pp. 413-446 | DOI | MR | Zbl
[19] Accurate eigenvalue asymptotics for the magnetic Neumann Laplacian, Ann. Inst. Fourier (Grenoble), Volume 56 (2006) no. 1, pp. 1-67 | DOI | EuDML | Numdam | MR | Zbl
Cited by Sources: