On s’intéresse à l’espace de twisteurs réduit d’une variété presque hermitienne, en relisant un article de N.R.O’Brian et J.H.Rawnsley (Ann. Global Anal. Geom., 1985). On traite la question laissée ouverte de la dimension 6. Cet espace est muni d’une structure presque complexe en utilisant la distribution horizontale de la connexion hermitienne canonique. On montre qu’une condition nécessaire d’intégrabilité de est que la variété soit de type dans la classification de Gray et Hervella. Dans la deuxième partie on montre alors que les seules variétés de type en dimension 6 sont les variétés localement conformément « nearly Kähler ». Finalement la structure presque complexe de l’espace de twisteurs réduit est intégrable si et seulement si la variété est localement conforme à la sphère ou à une variété kählérienne, Bochner-plate.
We consider the reduced twistor space of an almost Hermitian manifold , after O’Brian and Rawnsley (Ann. Global Anal. Geom., 1985). We concentrate on dimension 6. This space has a natural almost complex structure associated with the canonical Hermitian connection. A necessary condition for the integrability of on is that the manifold belongs to the class of Gray, Hervella. In a second part, we then show that the almost Hermitian manifolds of type are all locally conformally nearly Kähler in dimension 6. Finally, is integrable if and only if is locally conformal to the sphere or to a Bochner-flat Kähler manifold.
Mot clés : géométrie presque hermitienne, espaces de twisteurs, structures ${\rm SU}(3)$
Keywords: almost Hermitian geometry, twistor spaces, ${\rm SU}(3)$-structures
Butruille, Jean-Baptiste 1
@article{AIF_2007__57_5_1451_0, author = {Butruille, Jean-Baptiste}, title = {Espace de twisteurs d{\textquoteright}une vari\'et\'e presque hermitienne de dimension 6}, journal = {Annales de l'Institut Fourier}, pages = {1451--1485}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {57}, number = {5}, year = {2007}, doi = {10.5802/aif.2301}, mrnumber = {2364136}, zbl = {1130.53021}, language = {fr}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2301/} }
TY - JOUR AU - Butruille, Jean-Baptiste TI - Espace de twisteurs d’une variété presque hermitienne de dimension 6 JO - Annales de l'Institut Fourier PY - 2007 SP - 1451 EP - 1485 VL - 57 IS - 5 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2301/ DO - 10.5802/aif.2301 LA - fr ID - AIF_2007__57_5_1451_0 ER -
%0 Journal Article %A Butruille, Jean-Baptiste %T Espace de twisteurs d’une variété presque hermitienne de dimension 6 %J Annales de l'Institut Fourier %D 2007 %P 1451-1485 %V 57 %N 5 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2301/ %R 10.5802/aif.2301 %G fr %F AIF_2007__57_5_1451_0
Butruille, Jean-Baptiste. Espace de twisteurs d’une variété presque hermitienne de dimension 6. Annales de l'Institut Fourier, Tome 57 (2007) no. 5, pp. 1451-1485. doi : 10.5802/aif.2301. https://aif.centre-mersenne.org/articles/10.5802/aif.2301/
[1] Self-duality in four-dimensional Riemannian geometry, Proc. Roy. Soc. London Ser.A, Volume 362 (1978), pp. 425-461 | DOI | MR | Zbl
[2] On some generalizations of the construction of twistor spaces, Global Riemannian geometry, Ellis Horwood, Chichester, 1984, pp. 52-58 | MR | Zbl
[3] Bochner formulae for orthogonal -structures on compact manifolds, Differential Geom. Appl., Volume 21 (2004), pp. 79-92 | DOI | MR | Zbl
[4] Böchner-Kähler metrics, J. Amer. Math. Soc., Volume 14 (2001), pp. 623-715 | DOI | MR | Zbl
[5] Twistor theory for Riemannian symmetric spaces with applications to harmonic maps of Riemann surfaces, Lecture Notes in Math., Volume 1424, Springer-Verlag, Berlin, Heidelberg, 1990 | MR | Zbl
[6] Classification des variétés approximativement Kählériennes homogènes, Ann. Global Anal. Geom., Volume 27 (2005), pp. 201-225 | DOI | MR | Zbl
[7] Variétés de Gray et géométries spéciales en dimension 6, École Polytechnique, Palaiseau (2005) (Ph. D. Thesis)
[8] The intrinsic torsion of and structures, Differential Geometry, Valencia 2001, World Sci. Publishing, River Edge, NJ, 2002, pp. 115-133 | MR | Zbl
[9] Conformal equivalence between certain geometries in dimension 6 and 7 (math.DG/0607487)
[10] The Bochner-flat geometry of weighted projective spaces, in ‘Perspectives in Riemannian geometry’, CRM Proc. Lecture Notes, Volume 40, Amer. Math. Soc., Providence, 2006, pp. 109-156 | Zbl
[11] Almost-Hermitian geometry, Diff. Geom. Appl., Volume 4 (1994), pp. 259-282 | DOI | MR | Zbl
[12] The structure of nearly Kähler manifolds, Math. Ann., Volume 223 (1976), pp. 233-248 | DOI | MR | Zbl
[13] The sixteen classes of almost Hermitian manifolds and their linear invariants, Ann. Mat. Pura Appl., Volume 123 (1980), pp. 35-58 | DOI | MR | Zbl
[14] Nouvelles géométries pseudo-Kählériennes et , C. R. Acad. Sci. Paris, Volume 283 (1976), pp. 115-118 | MR | Zbl
[15] Kählerian twistor spaces, Proc. Lond. Math. Soc. (3), Volume 43 (1981), pp. 133-150 | DOI | MR | Zbl
[16] The geometry of three-forms in six dimensions, J. Diff. Geom., Volume 55 (2000), pp. 547-576 | MR | Zbl
[17] Stable forms and special metrics, Global differential geometry : the mathematical legacy of A.Gray, Contemp. Math., Volume 288, Amer. Math. Soc., Providence, 2001, pp. 70-89 | MR | Zbl
[18] K-spaces of maximal rank, Mat. Zametki, Volume 22 (1977), pp. 465-476 | MR | Zbl
[19] On Riemannian manifolds with structures, Boll. Un. Mat. Ital. A, Volume 10 (1996), pp. 99-112 | MR | Zbl
[20] Special almost Hermitian geometry, J. Geom. Phys., Volume 55 (2005), pp. 450-470 | DOI | MR | Zbl
[21] On nearly Kähler geometry, Ann. Global Anal. Geom, Volume 22 (2002), pp. 167-178 | DOI | MR | Zbl
[22] Twistor spaces, Ann. Global Anal. Geom., Volume 3 (1985), pp. 29-58 | DOI | Zbl
[23] The twistor programme, Reports on Math. Phys., Volume 12 (1977), pp. 65-76 | DOI | MR
[24] Some special geometries defined by Lie groups, Oxford (1993) (Ph. D. Thesis)
[25] Riemannian geometry and holonomy groups, Pitman Research Notes in Math., Volume 201, Longman Scientific and Technical, New York, 1989 | MR | Zbl
[26] The twistor space of the conformal six sphere and vector bundles on quadrics, J. Geom. Phys., Volume 19 (1996), pp. 246-266 | DOI | MR | Zbl
[27] Curvature tensors on almost Hermitian manifolds, Trans. Amer. math. Soc., Volume 267 (1981), pp. 365-397 | DOI | MR | Zbl
Cité par Sources :