Dans cet article nous montrons un théorème de point fixe o-minimal pour les applications définissables continues sur les ensembles définissables et définissablement compacts, qui généralise la version de Brumfiel du théorème de point fixe de Hopf pour les applications semi-algébriques.
Here we prove an o-minimal fixed point theorem for definable continuous maps on definably compact definable sets, generalizing Brumfiel’s version of the Hopf fixed point theorem for semi-algebraic maps.
Keywords: O-minimal structures, fixed point theorems
Mot clés : Structures o-minimales, théorème de point fixe
Edmundo, Mário J. 1
@article{AIF_2007__57_5_1441_0, author = {Edmundo, M\'ario J.}, title = {A fixed point theorem in o-minimal structures}, journal = {Annales de l'Institut Fourier}, pages = {1441--1450}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {57}, number = {5}, year = {2007}, doi = {10.5802/aif.2300}, mrnumber = {2364135}, zbl = {1127.03034}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2300/} }
TY - JOUR AU - Edmundo, Mário J. TI - A fixed point theorem in o-minimal structures JO - Annales de l'Institut Fourier PY - 2007 SP - 1441 EP - 1450 VL - 57 IS - 5 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2300/ DO - 10.5802/aif.2300 LA - en ID - AIF_2007__57_5_1441_0 ER -
%0 Journal Article %A Edmundo, Mário J. %T A fixed point theorem in o-minimal structures %J Annales de l'Institut Fourier %D 2007 %P 1441-1450 %V 57 %N 5 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2300/ %R 10.5802/aif.2300 %G en %F AIF_2007__57_5_1441_0
Edmundo, Mário J. A fixed point theorem in o-minimal structures. Annales de l'Institut Fourier, Tome 57 (2007) no. 5, pp. 1441-1450. doi : 10.5802/aif.2300. https://aif.centre-mersenne.org/articles/10.5802/aif.2300/
[1] Transfer methods for o-minimal topology, J. Symbolic Logic, Volume 68 (2003), pp. 785-794 | DOI | MR | Zbl
[2] Real algebraic geometry, Springer-Verlag, 1998 | MR | Zbl
[3] A Hopf fixed point theorem for semi-algebraic maps, Lecture Notes in Math. 1524, Springer Verlag, Berlin, 1992 Real algebraic geometry (Rennes, 1991) | MR | Zbl
[4] An introduction to o-minimal geometry Dip. Mat. Univ. Pisa, Dottorato di Ricerca in Matematica, Istituti Editoriali e Poligrafici Internazionali, Pisa (2000). Available in RAAG preprint server 2000, http://ihp-raag.org/
[5] On the homology of algebraic varieties over real closed fields, J. reine u.angew. Math., Volume 335 (1982), pp. 122-163 | DOI | MR | Zbl
[6] Lectures on algebraic topology, Springer Verlag, 1995 | MR | Zbl
[7] Tame topology and o-minimal structures, Cambridge University Press, 1998 | MR | Zbl
[8] Definably compact abelian groups, J. Math. Logic, Volume 4 (2004), pp. 163-180 | DOI | MR | Zbl
[9] Definable compacteness and definable subgroups of o-minimal groups, J. London Math. Soc., Volume 59 (1999), pp. 769-786 | DOI | MR | Zbl
[10] An introduction to algebraic topology, Springer Verlag, 1988 | MR | Zbl
[11] O-minimal homology, University of Illinois at Urbana-Champaign (1996) (Ph. D. Thesis)
Cité par Sources :