Nous établissons des résultats nouveaux sur le prolongement à poids des formes holomorphes de degré maximal avec des valeurs dans un fibré linéaire, d’une hypersurface holomorphe lisse définie par une fonction holomorphe. Les poids que nous employons sont déterminés par certaines fonctions que nous appelons des dénominateurs. Nous donnons une collection d’exemples de ces dénominateurs liés au diviseur défini par la sous-variété.
We establish new results on weighted -extension of holomorphic top forms with values in a holomorphic line bundle, from a smooth hypersurface cut out by a holomorphic function. The weights we use are determined by certain functions that we call denominators. We give a collection of examples of these denominators related to the divisor defined by the submanifold.
Keywords: Ohsawa-Takegoshi-type extension, twisted Bochner-Kodaira technique, denominators
Mot clés : Ohsawa-Takegoshi-type extension, technique de Bochner-Kodaira tordue, dénominateurs
McNeal, Jeffery D. 1 ; Varolin, Dror 2
@article{AIF_2007__57_3_703_0, author = {McNeal, Jeffery D. and Varolin, Dror}, title = {Analytic inversion of adjunction: $L^2$ extension theorems with gain}, journal = {Annales de l'Institut Fourier}, pages = {703--718}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {57}, number = {3}, year = {2007}, doi = {10.5802/aif.2273}, mrnumber = {2336826}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2273/} }
TY - JOUR AU - McNeal, Jeffery D. AU - Varolin, Dror TI - Analytic inversion of adjunction: $L^2$ extension theorems with gain JO - Annales de l'Institut Fourier PY - 2007 SP - 703 EP - 718 VL - 57 IS - 3 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2273/ DO - 10.5802/aif.2273 LA - en ID - AIF_2007__57_3_703_0 ER -
%0 Journal Article %A McNeal, Jeffery D. %A Varolin, Dror %T Analytic inversion of adjunction: $L^2$ extension theorems with gain %J Annales de l'Institut Fourier %D 2007 %P 703-718 %V 57 %N 3 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2273/ %R 10.5802/aif.2273 %G en %F AIF_2007__57_3_703_0
McNeal, Jeffery D.; Varolin, Dror. Analytic inversion of adjunction: $L^2$ extension theorems with gain. Annales de l'Institut Fourier, Tome 57 (2007) no. 3, pp. 703-718. doi : 10.5802/aif.2273. https://aif.centre-mersenne.org/articles/10.5802/aif.2273/
[1] The extension theorem of Ohsawa-Takegoshi and the theorem of Donnelly-Fefferman, Ann. Inst. Fourier (Grenoble), Volume 46 (1996) no. 4, pp. 1083-1094 | DOI | EuDML | Numdam | MR | Zbl
[2] Multiplier ideal sheaves and analytic methods in algebraic geometry, ICTP Lect. Notes, Volume 6, Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2001 School on Vanishing Theorems and Effective Results in Algebraic Geometry (Trieste, 2000) 1–148 | MR | Zbl
[3] Singularities of pairs, Algebraic geometry – Santa Cruz (1995), pp. 221-287 (Proc. Sympos. Pure Math., 62, Part 1, Amer. Math. Soc., Providence, RI, 1997) | MR | Zbl
[4] Positivity in algebraic geometry, I, II, Springer, 2004 | MR | Zbl
[5] On large values of holomorphic functions, Math. Res. Let., Volume 3 (1996), pp. 247-259 | MR | Zbl
[6] On the extension of holomorphic functions. III. Negligible weights, Math. Z., Volume 219 (1995) no. 2, pp. 215-225 | DOI | EuDML | MR | Zbl
[7] On the extension of holomorphic functions, Math. Z., Volume 195 (1987) no. 2, pp. 197-204 | DOI | EuDML | MR | Zbl
[8] The Fujita conjecture and the extension theorem of Ohsawa-Takegoshi, Geometric Complex Analysis, Hayama. World Scientific (1996), pp. 577-592 | MR | Zbl
[9] Invariance of plurigenera, Invent. Math., Volume 134 (1998) no. 3, p. 661-673. | DOI | MR | Zbl
[10] Extension of twisted pluricanonical sections with plurisubharmonic weight and invariance of semipositively twisted plurigenera for manifolds not necessarily of general type, Complex geometry, Springer-Verlag (2002), pp. 223-277 (Collection of papers dedicated to Hans Grauert) | MR | Zbl
Cité par Sources :