Suppose has a 2-dimensional expanding subspace , satisfies a regularity condition, called “good star”, and has , where is an oriented compound of . A morphism of the free group on is called a non-abelianization of if it has structure matrix . We show that there is a tiling substitution whose “boundary substitution” is a non-abelianization of . Such a tiling substitution leads to a self-affine tiling of with as its expansion. In the last section we find conditions on so that has no negative entries.
Supposons que ait un sous-espace d’extension bidimensionnel , satisfaisant une condition de régularité, appelée “bonne étoile”, et telle que , où est un composé orienté. Un morphisme du groupe libre sur est une non-abélianisation de si sa matrice de structure est . Nous prouvons qu’il existe une substitution de pavage dont la substitution de frontière est une non-abélianisation de . Une telle substitution de pavage donne un pavage “auto-affine” de avec pour expansion . Dans la dernière section nous trouvons des conditions sur de sorte que n’ait pas de coefficients négatifs.
Keywords: Tilings, substitutions, non-Pisot property, Binet-Cauchy theorem
Mot clés : pavages, substitutions, properté non-Pisot, théorème de Binet-Cauchy
@article{AIF_2006__56_7_2391_0, author = {Furukado, Maki and Ito, Shunji and Robinson, E. Arthur Jr}, title = {Tilings associated with {non-Pisot} matrices}, journal = {Annales de l'Institut Fourier}, pages = {2391--2435}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {56}, number = {7}, year = {2006}, doi = {10.5802/aif.2244}, mrnumber = {2290785}, zbl = {1142.15015}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2244/} }
TY - JOUR AU - Furukado, Maki AU - Ito, Shunji AU - Robinson, E. Arthur Jr TI - Tilings associated with non-Pisot matrices JO - Annales de l'Institut Fourier PY - 2006 SP - 2391 EP - 2435 VL - 56 IS - 7 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2244/ DO - 10.5802/aif.2244 LA - en ID - AIF_2006__56_7_2391_0 ER -
%0 Journal Article %A Furukado, Maki %A Ito, Shunji %A Robinson, E. Arthur Jr %T Tilings associated with non-Pisot matrices %J Annales de l'Institut Fourier %D 2006 %P 2391-2435 %V 56 %N 7 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2244/ %R 10.5802/aif.2244 %G en %F AIF_2006__56_7_2391_0
Furukado, Maki; Ito, Shunji; Robinson, E. Arthur Jr. Tilings associated with non-Pisot matrices. Annales de l'Institut Fourier, Volume 56 (2006) no. 7, pp. 2391-2435. doi : 10.5802/aif.2244. https://aif.centre-mersenne.org/articles/10.5802/aif.2244/
[1] Complex Analysis, McGraw-Hill, 1978 | MR | Zbl
[2] Determinants and Matrices, Oliver and Boyd, Ltd., 1956 | Zbl
[3] Tilings, quasicrystals, discrete planes, generalized substitutions, and multidimensional continued fractions, Discrete models: combinatorics, computation, and geometry (Discrete Math. Theor. Comput. Sci. Proc., AA), Maison Inform. Math. Discrèt., Paris, 2001 (059-078) | MR | Zbl
[4] Pisot substitutions and Rauzy fractals, Bull. Belg. Math. Soc. (2001), pp. 181-207 | MR | Zbl
[5] Algebraic theory of Penrose’s nonperiodic tilings of the plane. I, II, Nederl. Akad. Wetensch. Indag. Math., Volume 43 (1981) no. 1, p. 39-52, 53-66 | Zbl
[6] Some properties of invertible substitutions of rank , and higher dimensional substitutions, Osaka J. Math., Volume 40 (2003) no. 2, pp. 543-562 | MR | Zbl
[7] Tilings from some non-irreducible, Pisot substitutions, Discrete Math. Theor. Comput. Sci., Volume 7 (2005) no. 1, pp. 81-121 | MR | Zbl
[8] Generalized -expansions, substitution tilings and local finiteness (to appear in Transactions Amer. Math. Soc.) | Zbl
[9] Tiling from non-Pisot unimodular matrices (to appear in Hirosihima Math. J.) | MR | Zbl
[10] Connected Markov Partitions of group automorphisms ands Rauzy fractals Substitution and its applicatoin : Research Report Grant-in-Aid scientific Research (c)(2), (project number 09640291, Japan (2002), p. 41-92
[11] Canonical substitutions tilings of Ammann-Beenker type, Theoret. Comput. Sci., Volume 319 (2004) no. 1-3, pp. 241-279 | DOI | MR | Zbl
[12] Modified Jacobi-Perron algorithm and generating Markov partitions for special hyperbolic toral automorphisms, Tokyo J. Math., Volume 16 (1993) no. 2, pp. 441-472 | DOI | MR | Zbl
[13] Self-similar tilings, Princeton University (1990) (Ph. D. Thesis)
[14] An introduction to symbolic dynamics and coding, Cambridge University Press, Cambridge, 1995 | MR | Zbl
[15] Nombres algébriques et substitutions, Bull. Soc. Math. France, Volume 110 (1982) no. 2, pp. 147-178 | Numdam | MR | Zbl
[16] Symbolic dynamics and tilings of , Symbolic dynamics and its applications (Proc. Sympos. Appl. Math.), Volume 60, Amer. Math. Soc., Providence, RI, 2004, pp. 81-119 | MR | Zbl
[17] Quasicrystals and geometry, Cambridge University Press, Cambridge, 1995 | MR | Zbl
Cited by Sources: