We give an example of a compact 6-dimensional non-Kähler symplectic manifold that satisfies the Hard Lefschetz Condition. Moreover, it is showed that is a special generalized Calabi-Yau manifold.
On donne un exemple d’une variété symplectique compacte de dimension qui n’admet aucune structure Kählerienne, mais qui satisfait la condition de Lefschetz Forte et dont l’algèbre de DeRham est formelle ; de plus, on montre que peut être dotée d’une structure de Calabi-Yau généralisée spéciale.
Keywords: Symplectic manifolds, Calabi-Yau manifolds
Mot clés : variété de Calabi-Yau, Calabi-Yau manifolds
@article{AIF_2006__56_5_1281_0, author = {de Bartolomeis, Paolo and Tomassini, Adriano}, title = {On {Solvable} {Generalized} {Calabi-Yau} {Manifolds}}, journal = {Annales de l'Institut Fourier}, pages = {1281--1296}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {56}, number = {5}, year = {2006}, doi = {10.5802/aif.2213}, mrnumber = {2273857}, zbl = {1127.53065}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2213/} }
TY - JOUR AU - de Bartolomeis, Paolo AU - Tomassini, Adriano TI - On Solvable Generalized Calabi-Yau Manifolds JO - Annales de l'Institut Fourier PY - 2006 SP - 1281 EP - 1296 VL - 56 IS - 5 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2213/ DO - 10.5802/aif.2213 LA - en ID - AIF_2006__56_5_1281_0 ER -
%0 Journal Article %A de Bartolomeis, Paolo %A Tomassini, Adriano %T On Solvable Generalized Calabi-Yau Manifolds %J Annales de l'Institut Fourier %D 2006 %P 1281-1296 %V 56 %N 5 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2213/ %R 10.5802/aif.2213 %G en %F AIF_2006__56_5_1281_0
de Bartolomeis, Paolo; Tomassini, Adriano. On Solvable Generalized Calabi-Yau Manifolds. Annales de l'Institut Fourier, Volume 56 (2006) no. 5, pp. 1281-1296. doi : 10.5802/aif.2213. https://aif.centre-mersenne.org/articles/10.5802/aif.2213/
[1] Symplectic and Holomorphic Theory in Kähler Geometry (2004) (Technical report)
[2] On the Maslov Index of Lagrangian Submanifolds of Generalized Calabi-Yau Manifolds preprint (2005) | Zbl
[3] On Formality of Some Symplectic Manifolds, Inter. Math. Res. Notic., Volume 24 (2001), pp. 1287-1314 | DOI | MR | Zbl
[4] Kähler and symplectic structures on nilmanifolds, Topology, Volume 27 (1988), pp. 513-518 | DOI | MR | Zbl
[5] Sur le variétés analitiques complexes, Ann. Sci. Ecole Norm. Sup., Volume 73 (1956), pp. 157-202 | EuDML | Numdam | MR | Zbl
[6] A Differential Complex for Poisson Manifolds, J. Diff. Geom., Volume 28 (1988), pp. 93-114 | MR | Zbl
[7] Real Homotopy Theory of Kähler Manifolds, Inventiones Math., Volume 29 (1975), pp. 245-274 | DOI | EuDML | MR | Zbl
[8] A note on compact solvmanifolds with Kähler structures, Osaka J. of Math., Volume 43 (2006) no. 3, pp. 131-135 | MR | Zbl
[9] Harmonic cohomology classes of symplectic manifolds, Comm. Math. Helvetici, Volume 70 (1995), pp. 1-9 | DOI | EuDML | MR | Zbl
[10] Formality of Canonical Symplectic Complexes and Frobenius Manifolds, Int. Math. Res. Not., Volume 4 (1998), pp. 727-733 | DOI | MR | Zbl
[11] Complex parallelisable manifolds and their small deformations, J. of Diff. Geom., Volume 10 (1975), pp. 85-112 | MR | Zbl
[12] Spazi omogenei Kähleriani di gruppi di Lie complessi risolubili, Boll. U.M.I., Volume 2 A (1983), pp. 203-210 | Zbl
[13] Hodge Structure on Symplectic Manifolds, Adv. in Math., Volume 120 (1996), pp. 143-154 | DOI | MR | Zbl
Cited by Sources: