Via the Bousfield-Gugenheim realization functor, and starting from the Brown-Szczarba model of a function space, we give a functorial framework to describe basic objects and maps concerning the rational homotopy type of function spaces and its path components.
Moyennant le foncteur de réalisation de Bousfield-Gugenheim, et à l’aide comme point de départ du modèle de Brown Szczarba d’un espace de fonctions, on décrit les objets basiques et les applications relatives au type d’homotopie rationnelle des espaces fonctionnels et de leurs composantes arc-connexes.
Keywords: Function space, mapping space, Sullivan model, rational homotopy theory
Mot clés : Espace fonctionnel, modèle de Sullivan, homotopie rationnelle
@article{AIF_2006__56_3_815_0, author = {Buijs, Urtzi and Murillo, Aniceto}, title = {Basic constructions in rational homotopy theory of function spaces}, journal = {Annales de l'Institut Fourier}, pages = {815--838}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {56}, number = {3}, year = {2006}, doi = {10.5802/aif.2201}, mrnumber = {2244231}, zbl = {1122.55008}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2201/} }
TY - JOUR AU - Buijs, Urtzi AU - Murillo, Aniceto TI - Basic constructions in rational homotopy theory of function spaces JO - Annales de l'Institut Fourier PY - 2006 SP - 815 EP - 838 VL - 56 IS - 3 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2201/ DO - 10.5802/aif.2201 LA - en ID - AIF_2006__56_3_815_0 ER -
%0 Journal Article %A Buijs, Urtzi %A Murillo, Aniceto %T Basic constructions in rational homotopy theory of function spaces %J Annales de l'Institut Fourier %D 2006 %P 815-838 %V 56 %N 3 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2201/ %R 10.5802/aif.2201 %G en %F AIF_2006__56_3_815_0
Buijs, Urtzi; Murillo, Aniceto. Basic constructions in rational homotopy theory of function spaces. Annales de l'Institut Fourier, Volume 56 (2006) no. 3, pp. 815-838. doi : 10.5802/aif.2201. https://aif.centre-mersenne.org/articles/10.5802/aif.2201/
[1] On PL De Rham theory and rational homotopy type, 179 (8), Memoirs of the Amer. Math. Soc., 1976 | MR | Zbl
[2] Continuous cohomology and real homotopy type, Trans. Amer. Math. Soc., Volume 31 (1989), pp. 57-106 | DOI | MR | Zbl
[3] On the rational homotopy type of function spaces, Trans. Amer. Math. Soc., Volume 349 (1997), pp. 4931-4951 | DOI | MR | Zbl
[4] Rational category of the space of sections of a nilpotent bundle, Comment. Math. Helvetici, Volume 65 (1990), pp. 615-622 | DOI | MR | Zbl
[5] Rational Homotopy Theory, G.T.M., Volume 205, Springer, 2000 | MR | Zbl
[6] Simplicial Homotopy Theory, Progress in Mathematics, Volume 174, Birkhäuser, Basel-Boston-Berlin, 1999 | MR | Zbl
[7] Rational homotopy of the space of sections of a nilpotent bundle, Trans. Amer. Math. Soc., Volume 273 (1982), pp. 609-620 | DOI | MR | Zbl
[8] Lecture on Minimal Models, 230, Mémoires de la Société Mathématique de France, 1983 | Numdam | Zbl
[9] Localization of nilpotent groups and spaces, 15, North Holland Mathematical Studies, 1975 (North Holland) | MR | Zbl
[10] A rational model for the evaluation map (2005) (Preprint) | Zbl
[11] Simplicial Objects in Algebraic Topology, Chicago Lectures in Mathematics, 1992 (University of Chicago Press) | MR | Zbl
[12] On spaces having the homotopy type of a CW-complex, Trans. Amer. Math. Soc., Volume 342 (1994) no. 2, pp. 895-915
[13] Rational homotopy of the space of self-maps of complexes with finitely many homotopy groups, Trans. Amer. Math. Soc., Volume 90 (1994), pp. 272-280 | Zbl
[14] Rational evaluation subgroups, Math. Zeit., Volume 221 (1996), pp. 387-400 | MR | Zbl
[15] Infinitesimal computations in Topology, Publ. Math. de l’I.H.E.S., Volume 47 (1978), pp. 269-331 | Numdam | MR | Zbl
[16] L’homologie des espaces fonctionnels, Colloque de topologie algébrique (1957), pp. 29-39 | MR | Zbl
[17] Sur l’homotopie rationnelle des espaces fonctionnels, Manuscripta Math., Volume 56 (1986), pp. 177-191 | DOI | MR | Zbl
Cited by Sources: