On the Birch and Swinnerton-Dyer conjecture for modular elliptic curves over totally real fields
Annales de l'Institut Fourier, Volume 56 (2006) no. 3, pp. 689-733.

Let E/F be a modular elliptic curve defined over a totally real number field F and let φ be its associated eigenform. This paper presents a new method, inspired by a recent work of Bertolini and Darmon, to control the rank of E over suitable quadratic imaginary extensions K/F. In particular, this argument can also be applied to the cases not covered by the work of Kolyvagin and Logachëv, that is, when [F:] is even and φ not new at any prime.

Soit E/F une courbe elliptique modulaire définie sur un champ de nombres totalement réel F et soit φ la forme propre associée. Ce papier présente un nouvelle méthode, inspirée par un récent travail de Bertolini et Darmon, pour contrôler le rang de E sur des extensions convenables quadratiques imaginaires K/F. En particulier, ce résultat peut être appliqué aux cas qui ne sont pas considérés dans le travail de Kolyvagin et Logachëv, i.e., quand [F:] est pair et φ n’est pas nouveau en aucun idéal premier.

DOI: 10.5802/aif.2197
Classification: 11G05, 11G18, 11G40, 11F30
Keywords: Elliptic Curves, Birch and Swinnerton-Dyer Conjecture, Shimura Varieties, Congruences between Hilbert Modular Forms
Mot clés : courbes elliptiques, conjecture de Birch et Swinnerton-Dyer, variétés de Shimura, congruences entre formes modulaires de Hilbert

Longo, Matteo 1

1 Université Louis Pasteur IRMA 7, rue René Descartes 67084 Strasbourg (France)
@article{AIF_2006__56_3_689_0,
     author = {Longo, Matteo},
     title = {On the {Birch} and {Swinnerton-Dyer} conjecture for modular elliptic curves over totally real fields},
     journal = {Annales de l'Institut Fourier},
     pages = {689--733},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {56},
     number = {3},
     year = {2006},
     doi = {10.5802/aif.2197},
     mrnumber = {2244227},
     zbl = {1152.11028},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2197/}
}
TY  - JOUR
AU  - Longo, Matteo
TI  - On the Birch and Swinnerton-Dyer conjecture for modular elliptic curves over totally real fields
JO  - Annales de l'Institut Fourier
PY  - 2006
SP  - 689
EP  - 733
VL  - 56
IS  - 3
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2197/
DO  - 10.5802/aif.2197
LA  - en
ID  - AIF_2006__56_3_689_0
ER  - 
%0 Journal Article
%A Longo, Matteo
%T On the Birch and Swinnerton-Dyer conjecture for modular elliptic curves over totally real fields
%J Annales de l'Institut Fourier
%D 2006
%P 689-733
%V 56
%N 3
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.2197/
%R 10.5802/aif.2197
%G en
%F AIF_2006__56_3_689_0
Longo, Matteo. On the Birch and Swinnerton-Dyer conjecture for modular elliptic curves over totally real fields. Annales de l'Institut Fourier, Volume 56 (2006) no. 3, pp. 689-733. doi : 10.5802/aif.2197. https://aif.centre-mersenne.org/articles/10.5802/aif.2197/

[1] Bertolini, Massimo; Darmon, Henri Heegner points on Mumford-Tate curves, Invent. Math., Volume 126 (1996) no. 3, pp. 413-456 | DOI | MR | Zbl

[2] Bertolini, Massimo; Darmon, Henri A rigid analytic Gross-Zagier formula and arithmetic applications, Ann. of Math. (2), Volume 146 (1997) no. 1, pp. 111-147 (With an appendix by Bas Edixhoven) | DOI | MR | Zbl

[3] Bertolini, Massimo; Darmon, Henri p-adic periods, p-adic L-functions, and the p-adic uniformization of Shimura curves, Duke Math. J., Volume 98 (1999) no. 2, pp. 305-334 | DOI | MR | Zbl

[4] Bertolini, Massimo; Darmon, Henri Iwasawa’s main conjecture for elliptic curves over anticyclotomic p -extensions, Ann. of Math. (2), Volume 162 (2005) no. 1, pp. 1-64 | DOI | MR | Zbl

[5] Bloch, Spencer; Kato, Kazuya L-functions and Tamagawa numbers of motives, The Grothendieck Festschrift, Vol. I (Progr. Math.), Volume 86, Birkhäuser Boston, Boston, MA, 1990, pp. 333-400 | MR | Zbl

[6] Boston, Nigel; Hendrik W. Jr., Lenstra; Ribet, Kenneth A. Quotients of group rings arising from two-dimensional representations, C. R. Acad. Sci. Paris Sér. I Math., Volume 312 (1991) no. 4, pp. 323-328 | MR | Zbl

[7] Boutot, J.-F.; Carayol, H. Uniformisation p-adique des courbes de Shimura: les théorèmes de Čerednik et de Drinfeld, Astérisque (1991) no. 196-197, pp. 7, 45-158 Courbes modulaires et courbes de Shimura (Orsay, 1987/1988) | MR | Zbl

[8] Breuil, Christophe; Conrad, Brian; Diamond, Fred; Taylor, Richard On the modularity of elliptic curves over Q: wild 3-adic exercises, J. Amer. Math. Soc., Volume 14 (2001) no. 4, pp. 843-939 | DOI | MR | Zbl

[9] Bump, Daniel; Friedberg, Solomon; Hoffstein, Jeffrey Eisenstein series on the metaplectic group and nonvanishing theorems for automorphic L-functions and their derivatives, Ann. of Math. (2), Volume 131 (1990) no. 1, pp. 53-127 | DOI | MR | Zbl

[10] Carayol, Henri Sur la mauvaise réduction des courbes de Shimura, Compositio Math., Volume 59 (1986) no. 2, pp. 151-230 | Numdam | MR | Zbl

[11] Carayol, Henri Sur les représentations galoisiennes modulo l attachées aux formes modulaires, Duke Math. J., Volume 59 (1989) no. 3, pp. 785-801 | DOI | MR | Zbl

[12] Čerednik, I. V. Uniformization of algebraic curves by discrete arithmetic subgroups of PGL 2 (k w ) with compact quotient spaces, Mat. Sb. (N.S.), Volume 100(142) (1976) no. 1, p. 59-88, 165 | MR

[13] Coates, J.; Greenberg, R. Kummer theory for abelian varieties over local fields, Invent. Math., Volume 124 (1996) no. 1-3, pp. 129-174 | DOI | MR | Zbl

[14] Conrad, Brian; Diamond, Fred; Taylor, Richard Modularity of certain potentially Barsotti-Tate Galois representations, J. Amer. Math. Soc., Volume 12 (1999) no. 2, pp. 521-567 | DOI | MR | Zbl

[15] Darmon, Henri; Diamond, Fred; Taylor, Richard Fermat’s last theorem, Current developments in mathematics, 1995 (Cambridge, MA), Internat. Press, Cambridge, MA, 1994, pp. 1-154 | Zbl

[16] Darmon, Henri; Logan, Adam Periods of Hilbert modular forms and rational points on elliptic curves, Int. Math. Res. Not. (2003) no. 40, pp. 2153-2180 | DOI | MR | Zbl

[17] Diamond, Fred On deformation rings and Hecke rings, Ann. of Math. (2), Volume 144 (1996) no. 1, pp. 137-166 | DOI | MR | Zbl

[18] Diamond, Fred; Taylor, Richard Nonoptimal levels of mod l modular representations, Invent. Math., Volume 115 (1994) no. 3, pp. 435-462 | DOI | MR | Zbl

[19] Drinfel’d, V. G. Coverings of p-adic symmetric domains, Funkcional. Anal. i Priložen., Volume 10 (1976) no. 2, pp. 29-40 | MR | Zbl

[20] Eichler, M. The basis problem for modular forms and the traces of the Hecke operators, Modular functions of one variable, I (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) (Lecture Notes in Math.), Volume 320, Springer, Berlin, 1973, pp. 75-151 | MR | Zbl

[21] Gerritzen, Lothar; van der Put, Marius Schottky groups and Mumford curves, Lecture Notes in Mathematics, 817, Springer, Berlin, 1980 | MR | Zbl

[22] Greenberg, Ralph Iwasawa theory for elliptic curves, Arithmetic theory of elliptic curves (Cetraro, 1997) (Lecture Notes in Math.), Volume 1716, Springer, Berlin, 1999, pp. 51-144 | MR | Zbl

[23] Gross, Benedict H. Heights and the special values of L-series, Number theory (Montreal, Que., 1985) (CMS Conf. Proc.), Volume 7, Amer. Math. Soc., Providence, RI, 1987, pp. 115-187 | MR | Zbl

[24] Gross, Benedict H. Kolyvagin’s work on modular elliptic curves, L-functions and arithmetic (Durham, 1989) (London Math. Soc. Lecture Note Ser.), Volume 153, Cambridge Univ. Press, Cambridge, 1991, pp. 235-256 | Zbl

[25] Gross, Benedict H.; Zagier, Don B. Heegner points and derivatives of L-series, Invent. Math., Volume 84 (1986) no. 2, pp. 225-320 | DOI | MR | Zbl

[26] Grothendieck, Alexander Groupes de monodromie en géométrie algébrique. I, Springer-Verlag, Berlin, 1972 Séminaire de Géométrie Algébrique du Bois-Marie 1967–1969 (SGA 7 I), Dirigé par A. Grothendieck. Avec la collaboration de M. Raynaud et D. S. Rim, Lecture Notes in Mathematics, Vol. 288 | MR

[27] Jacquet, H.; Langlands, R. P. Automorphic forms on GL (2), Springer-Verlag, Berlin, 1970 (Lecture Notes in Mathematics, Vol. 114) | MR | Zbl

[28] Jarvis, Frazer Level lowering for modular mod l representations over totally real fields, Math. Ann., Volume 313 (1999) no. 1, pp. 141-160 | DOI | MR | Zbl

[29] Jarvis, Frazer Mazur’s principle for totally real fields of odd degree, Compositio Math., Volume 116 (1999) no. 1, pp. 39-79 | DOI | MR | Zbl

[30] Jarvis, Frazer Correspondences on Shimura curves and Mazur’s principle at p, Pacific J. Math., Volume 213 (2004) no. 2, pp. 267-280 | DOI | MR | Zbl

[31] Jordan, Bruce W.; Livné, Ron Integral Hodge theory and congruences between modular forms, Duke Math. J., Volume 80 (1995) no. 2, pp. 419-484 | DOI | MR | Zbl

[32] Jordan, Bruce W.; Livné, Ron A. Local Diophantine properties of Shimura curves, Math. Ann., Volume 270 (1985) no. 2, pp. 235-248 | DOI | MR | Zbl

[33] Kolyvagin, V. A. Finiteness of E(Q) and SH(E,Q) for a subclass of Weil curves, Izv. Akad. Nauk SSSR Ser. Mat., Volume 52 (1988) no. 3, p. 522-540, 670–671 | MR | Zbl

[34] Kolyvagin, V. A.; Logachëv, D. Y. Finiteness of SH over totally real fields, Izv. Akad. Nauk SSSR Ser. Mat., Volume 55 (1991) no. 4, pp. 851-876 | MR | Zbl

[35] Longo, Matteo On the Birch and Swinnerton-Dyer conjecture over totally real fields, Dipartimento di Matematica P. e A., Padova (2004) (Ph. D. Thesis)

[36] Milne, J. S. Arithmetic duality theorems, Perspectives in Mathematics, 1, Academic Press Inc., Boston, MA, 1986 | MR | Zbl

[37] Murty, M. Ram; Murty, V. Kumar Mean values of derivatives of modular L-series, Ann. of Math. (2), Volume 133 (1991) no. 3, pp. 447-475 | DOI | MR | Zbl

[38] Rajaei, Ali On the levels of mod l Hilbert modular forms, J. Reine Angew. Math., Volume 537 (2001), pp. 33-65 | DOI | MR | Zbl

[39] Ribet, K. A. On modular representations of Gal (Q ¯/Q) arising from modular forms, Invent. Math., Volume 100 (1990) no. 2, pp. 431-476 | DOI | MR | Zbl

[40] Ribet, Kenneth A. Congruence relations between modular forms, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Warsaw, 1983) (1984), pp. 503-514 | MR | Zbl

[41] Serre, Jean-Pierre Propriétés galoisiennes des points d’ordre fini des courbes elliptiques, Invent. Math., Volume 15 (1972) no. 4, pp. 259-331 | DOI | MR | Zbl

[42] Shimura, G. The special values of the zeta functions associated with Hilbert modular forms, Duke Math. J., Volume 45 (1978) no. 3, pp. 637-679 | DOI | MR | Zbl

[43] Shimura, Goro Introduction to the arithmetic theory of automorphic functions, Publications of the Mathematical Society of Japan, No. 11. Iwanami Shoten, Publishers, Tokyo, 1971 (Kanô Memorial Lectures, No. 1) | MR | Zbl

[44] Silverman, Joseph H. The arithmetic of elliptic curves, Graduate Texts in Mathematics, 106, Springer-Verlag, New York, 1986 | MR | Zbl

[45] Taylor, Richard On Galois representations associated to Hilbert modular forms, Invent. Math., Volume 98 (1989) no. 2, pp. 265-280 | DOI | MR | Zbl

[46] Taylor, Richard; Wiles, Andrew Ring-theoretic properties of certain Hecke algebras, Ann. of Math. (2), Volume 141 (1995) no. 3, pp. 553-572 | DOI | MR | Zbl

[47] Vignéras, Marie-France Arithmétique des algèbres de quaternions, Lecture Notes in Mathematics, 800, Springer, Berlin, 1980 | MR | Zbl

[48] Waldspurger, J.-L. Sur les valeurs de certaines fonctions L automorphes en leur centre de symétrie, Compositio Math., Volume 54 (1985) no. 2, pp. 173-242 | Numdam | MR | Zbl

[49] Waldspurger, J.-L. Correspondances de Shimura et quaternions, Forum Math., Volume 3 (1991) no. 3, pp. 219-307 | DOI | MR | Zbl

[50] Wiles, A. On ordinary λ-adic representations associated to modular forms, Invent. Math., Volume 94 (1988) no. 3, pp. 529-573 | DOI | MR | Zbl

[51] Wiles, A. Modular elliptic curves and Fermat’s last theorem, Ann. of Math. (2), Volume 141 (1995) no. 3, pp. 443-551 | DOI | MR | Zbl

[52] Zhang, Shou-Wu Gross-Zagier formula for GL 2 , Asian J. Math., Volume 5 (2001) no. 2, pp. 183-290 | MR | Zbl

[53] Zhang, Shou-Wu Heights of Heegner points on Shimura curves, Ann. of Math. (2), Volume 153 (2001) no. 1, pp. 27-147 | DOI | MR | Zbl

Cited by Sources: