We construct a subalgebra of dimension of the group algebra of the Weyl group of type containing its usual Solomon algebra and the one of : is nothing but the Mantaci-Reutenauer algebra but our point of view leads us to a construction of a surjective morphism of algebras . Jöllenbeck’s construction of irreducible characters of the symmetric group by using the coplactic equivalence classes can then be transposed to . In an appendix, P. Baumann and C. Hohlweg present in an explicit and combinatorial way the relation between this construction of the irreducible characters of and that of W. Specht.
Nous construisons une sous-algèbre de dimension de l’algèbre du groupe de Weyl de type contenant son algèbre de Solomon usuelle ainsi que celle de : n’est autre que l’algèbre de Mantaci-Reutenauer mais notre point de vue nous permet de construire un morphisme d’algèbres surjectif . La construction de Jöllenbeck des caractères irréductibles de à partir des classes d’équivalence coplaxique se transpose alors à . Un appendice à cet article, écrit par P. Baumann et C. Hohlweg, donne le lien combinatoire explicite entre cette construction des caractères irréductibles de et celle obtenue par W. Specht en 1932.
Keywords: descent algebra, hyperoctahedral group, coplactic algebra
Mot clés : algèbre de descente, groupe hyperoctaédral, algèbre coplaxique
Bonnafé, Cédric 1; Hohlweg, Christophe 2
@article{AIF_2006__56_1_131_0, author = {Bonnaf\'e, C\'edric and Hohlweg, Christophe}, title = {Generalized descent algebra and construction of irreducible characters of~hyperoctahedral groups}, journal = {Annales de l'Institut Fourier}, pages = {131--181}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {56}, number = {1}, year = {2006}, doi = {10.5802/aif.2176}, mrnumber = {2228684}, zbl = {1098.20011}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2176/} }
TY - JOUR AU - Bonnafé, Cédric AU - Hohlweg, Christophe TI - Generalized descent algebra and construction of irreducible characters of hyperoctahedral groups JO - Annales de l'Institut Fourier PY - 2006 SP - 131 EP - 181 VL - 56 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2176/ DO - 10.5802/aif.2176 LA - en ID - AIF_2006__56_1_131_0 ER -
%0 Journal Article %A Bonnafé, Cédric %A Hohlweg, Christophe %T Generalized descent algebra and construction of irreducible characters of hyperoctahedral groups %J Annales de l'Institut Fourier %D 2006 %P 131-181 %V 56 %N 1 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2176/ %R 10.5802/aif.2176 %G en %F AIF_2006__56_1_131_0
Bonnafé, Cédric; Hohlweg, Christophe. Generalized descent algebra and construction of irreducible characters of hyperoctahedral groups. Annales de l'Institut Fourier, Volume 56 (2006) no. 1, pp. 131-181. doi : 10.5802/aif.2176. https://aif.centre-mersenne.org/articles/10.5802/aif.2176/
[1] The Hopf algebra of signed permutations (in preparation)
[2] A symmetry of the descent algebra of a finite Coxeter group, Adv. in Math., Volume 193 (2005), pp. 416-437 | DOI | MR | Zbl
[3] Noncommutative Character Theory of Symmetric groups I, Imperial College press, London, 2005
[4] Left cells in type with unequal parameters, Represent. Theory, Volume 7 (2003), pp. 587-609 | DOI | MR | Zbl
[5] 4-6, Groupes et algèbres de Lie (1968) | MR | Zbl
[6] On the induction of Kazhdan-Lusztig cells, Bull. London Math. Soc., Volume 35 (2003) no. 5, pp. 608-614 | DOI | MR | Zbl
[7] CHEVIE — A system for computing and procesing generic character tables, Applicable Algebra in Eng. Comm. and Comp., Volume 7 (1996), pp. 175-210 | DOI | MR | Zbl
[8] Characters of Finite Coxeter Groups and Iwahori-Hecke Algebras, London Math. Soc. Mon. New Series, 21, LMS, 2000 | MR | Zbl
[9] Hopf algebras of symmetric functions and class functions, Comb. Represent. Groupe symétrique, Acte Table Ronde C.N.R.S (Lecture Notes in Math.), Volume 579 (1977), pp. 168-181 | MR | Zbl
[10] Reflection groups and Coxeter groups, 29, Cambridge university press, 1990 | MR | Zbl
[11] Nichtkommutative Charaktertheorie der symmetrischen Gruppen, Bayreuth. Math. Schr., Volume 56 (1999), pp. 1-41 | MR | Zbl
[12] Le monoïde plaxique, Noncommutative structures in algebra and geometric combinatorics (Quad. “Ricerca Sci.”), Volume 109 (1981), pp. 129-156 | MR | Zbl
[13] Characters of reductive groups over a finite field, Annals of Math. Studies, 107, Princeton University Press, 1984 | MR | Zbl
[14] Symmetric functions and Hall Polynomials, Oxford mathematical monographs, Oxford science publications, The Clarendon press, Oxford university press, 1995 (with contributions by A. Zelevinsky) | MR | Zbl
[15] Duality between quasi-symmetric functions ans Solomon descent algebra, J. Algebra, Volume 177 (1995), pp. 967-982 | DOI | MR | Zbl
[16] A generalization of Solomon’s algebra for hyperoctahedral groups and other wreath products, Comm. Algebra, Volume 23 (1995) no. 1, pp. 27-56 | DOI | MR | Zbl
[17] Algèbres de Hopf de tableaux, Ann. Sci. Math., Québec, Volume 19 (1996), pp. 79-90 | MR | Zbl
[18] A Mackey formula in the group ring of a Coxeter group, J. Algebra, Volume 41 (1976), pp. 255-268 | DOI | MR | Zbl
[19] Eine Verallgemeinerung der symmetrischen Gruppe, Schriften Math. Seminar Berlin, Volume 1 (1932), pp. 1-32 | Zbl
[20] Some aspects of groups acting on finite posets, J. Combin. Theory Ser. A, Volume 32 (1982), pp. 132-161 | DOI | MR | Zbl
[21] Lectures on Noncommutative Symmetric Functions, Interaction of Combinatorics and Representation Theory (MSJ Memoirs), Volume 11, Math. Soc. of Japan, 2001, pp. 39-94 | MR | Zbl
Cited by Sources: