[Sur le noyau de la chaleur et la hiérarchie de Korteweg-de Vries]
Nous donnons des formules explicites pour les coefficients d'Hadamard en termes de la fonction tau de la hiérarchie de Korteweg-de Vries. A partir de cette formule nous pouvons facilement démontrer les propriétés de ces coefficients.
We give explicit formulas for Hadamard's coefficients in terms of the tau-function of the Korteweg-de Vries hierarchy. We show that some of the basic properties of these coefficients can be easily derived from these formulas.
Keywords: Heat kernel expansions, KdV hierarchy, tau functions
Mot clés : Noyau de la chaleur, hiérarchie de KdV, fonctions tau
Iliev, Plamen 1
@article{AIF_2005__55_6_2117_0, author = {Iliev, Plamen}, title = {On the heat kernel and the {Korteweg--de} {Vries} hierarchy}, journal = {Annales de l'Institut Fourier}, pages = {2117--2127}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {55}, number = {6}, year = {2005}, doi = {10.5802/aif.2154}, zbl = {1078.35103}, mrnumber = {2187948}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2154/} }
TY - JOUR AU - Iliev, Plamen TI - On the heat kernel and the Korteweg--de Vries hierarchy JO - Annales de l'Institut Fourier PY - 2005 SP - 2117 EP - 2127 VL - 55 IS - 6 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2154/ DO - 10.5802/aif.2154 LA - en ID - AIF_2005__55_6_2117_0 ER -
%0 Journal Article %A Iliev, Plamen %T On the heat kernel and the Korteweg--de Vries hierarchy %J Annales de l'Institut Fourier %D 2005 %P 2117-2127 %V 55 %N 6 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2154/ %R 10.5802/aif.2154 %G en %F AIF_2005__55_6_2117_0
Iliev, Plamen. On the heat kernel and the Korteweg--de Vries hierarchy. Annales de l'Institut Fourier, Tome 55 (2005) no. 6, pp. 2117-2127. doi : 10.5802/aif.2154. https://aif.centre-mersenne.org/articles/10.5802/aif.2154/
[1] On a class of polynomials connected with the Korteweg-de Vries equation, Comm. Math. Phys., Volume 61 (1978), pp. 1-30 | DOI | MR | Zbl
[2] Rational and elliptic solutions of the Korteweg-de Vries equation and a related many-body problem, Comm. Pure Appl. Math., Volume 30 (1977), pp. 95-148 | DOI | MR | Zbl
[3] Special Functions, Encyclopedia of Mathematics and Its Applications, 71, Cambridge University Press, 1990 | Zbl
[4] A new explicit expression for the Korteweg-de Vries hierarchy, Math. Nachr., Volume 219 (2000), pp. 45-64 | DOI | MR | Zbl
[5] Heat kernels and Dirac operators, Grundlehren der Mathematischen Wissenschaften, 298, Springer-Verlag, Berlin, 1992 | MR | Zbl
[6] Geometry of the Spectrum, Proc. Sympos. Pure Math., 27, Amer. Math. Soc., Providence, 1975 | Zbl
[7] Transformation groups for soliton equations (Proc. RIMS Symp. Nonlinear Integrable Systems - Classical and Quantum Theory (Kyoto 1981)) (1983), pp. 39-119 | Zbl
[8] Soliton Equations and Hamiltonian Systems, 2nd Edition, Advanced Series in Mathematical Physics, 26, World Scienti?c, 2003 | MR | Zbl
[9] Differential equations in the spectral parameter, Comm. Math. Phys., Volume 103 (1986), pp. 177-240 | DOI | MR | Zbl
[10] Heat kernel techniques and quantum gravity (Winnipeg, MB, 1994), Discourses Math. Appl., 4, Texas A & M Univ., College Station, TX, 1995 | MR | Zbl
[11] Heat equation asymptotics, Differential geometry: Riemannian geometry (Los Angeles, CA, 1990), 54, Part 3, Amer. Math. Soc., Providence, RI, 1993 | MR | Zbl
[12] Heat kernel expansions on the integers, Math. Phys. Anal. Geom., Volume 5 (2002), pp. 183-200 | DOI | MR | Zbl
[13] Lectures on Cauchy's Problem, New Haven, Yale Univ. Press (1923) | JFM
[14] The spectral matrices of Toda solitons and the fundamental solution of some discrete heat equations (to appear in Annales de l'Institut Fourier) | Numdam
[15] The direct method in soliton theory (Translated from the 1992 Japanese original and edited by Atsushi Nagai, Jon Nimmo and Claire Gilson (with a foreword by Jarmo Hietarinta and Nimmo)), Volume 155 (2004) | Zbl
[16] Finite heat kernel expansions on the real line (math-ph/0504046, http://arxiv.org/abs/math-ph/0504046) | Zbl
[17] Can one hear the shape of a drum?, Amer. Math. Monthly, Volume 73 (1966), pp. 1-23 | DOI | MR | Zbl
[18] Curvature and the eigenvalues of the Laplacian, J. Diff. Geom., Volume 1 (1967), pp. 43-69 | MR | Zbl
[19] The spectrum of Hill's equation, Invent. Math., Volume 30 (1975), pp. 217-274 | DOI | MR | Zbl
[20] Soliton equations as dynamical systems on infinite dimensional Grassmann manifolds, Lect. Notes Num. Appl. Anal., Volume 5 (1982), pp. 259-271 | MR | Zbl
[21] An explicit expression for the Korteweg-de Vries hierarchy, Z. Anal. Anwendungen, Volume 7 (1988), pp. 203-214 | MR | Zbl
[22] Integrable foundations of string theory, Lectures on integrable systems, CIMPA-Summer school at Sophia Antipolis (1991) (1994), pp. 163-267 | Zbl
Cité par Sources :