Integral representations for multiple Hermite and multiple Laguerre polynomials
Annales de l'Institut Fourier, Volume 55 (2005) no. 6, pp. 2001-2014.

We give integral representations for multiple Hermite and multiple Laguerre polynomials of both type I and II. We also show how these are connected with double integral representations of certain kernels from random matrix theory.

On présente des représentations intégrales doubles pour les polynômes d'Hermite et de Laguerre multiples, aussi bien ceux de type I que ceux de type II. On montre aussi la connexion avec les représentations intégrales de certains noyaux de la théorie des matrices aléatoires.

DOI: 10.5802/aif.2148
Classification: 42C05, 15A52
Keywords: Multiple orthogonal polynomials, random matrices, Christoffel-Darboux formula
Mot clés : polynômes orthogonaux multiples, matrices aléatoires, formule de Christoffel-Darboux
M. BLEHER, Pavel 1; B.J. Kuijlaars, Arno 

1 Indiana University-Purdue University Indianapolis, department of mathematical sciences, 402 N. Blackford St., Indianapolis IN 46202 (USA), Katholieke Universiteit Leuven, department of mathematics, Celestijnenlaan 200 B, 3001 Leuven (Belgique)
@article{AIF_2005__55_6_2001_0,
     author = {M. BLEHER, Pavel and B.J. Kuijlaars, Arno},
     title = {Integral representations for multiple {Hermite} and multiple {Laguerre} polynomials},
     journal = {Annales de l'Institut Fourier},
     pages = {2001--2014},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {55},
     number = {6},
     year = {2005},
     doi = {10.5802/aif.2148},
     zbl = {1084.33008},
     mrnumber = {2187942},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2148/}
}
TY  - JOUR
AU  - M. BLEHER, Pavel
AU  - B.J. Kuijlaars, Arno
TI  - Integral representations for multiple Hermite and multiple Laguerre polynomials
JO  - Annales de l'Institut Fourier
PY  - 2005
SP  - 2001
EP  - 2014
VL  - 55
IS  - 6
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2148/
DO  - 10.5802/aif.2148
LA  - en
ID  - AIF_2005__55_6_2001_0
ER  - 
%0 Journal Article
%A M. BLEHER, Pavel
%A B.J. Kuijlaars, Arno
%T Integral representations for multiple Hermite and multiple Laguerre polynomials
%J Annales de l'Institut Fourier
%D 2005
%P 2001-2014
%V 55
%N 6
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.2148/
%R 10.5802/aif.2148
%G en
%F AIF_2005__55_6_2001_0
M. BLEHER, Pavel; B.J. Kuijlaars, Arno. Integral representations for multiple Hermite and multiple Laguerre polynomials. Annales de l'Institut Fourier, Volume 55 (2005) no. 6, pp. 2001-2014. doi : 10.5802/aif.2148. https://aif.centre-mersenne.org/articles/10.5802/aif.2148/

[1] A. I. Aptekarev Multiple orthogonal polynomials, J. Comput. Appl. Math., Volume 99 (1998), pp. 423-447 | DOI | MR | Zbl

[2] A. I. Aptekarev; P. M. Bleher; A. B. J. Kuijlaars Large n limit of Gaussian random matrices with external source, part II (to appear in Comm. Math. Phys., preprint math-ph/0408041, http://arxiv.org/abs/math-ph/0408041)

[3] A. I. Aptekarev; A. Branquinho; W. Van Assche Multiple orthogonal polynomials for classical weights, Trans. Amer. Math. Soc., Volume 355 (2003), pp. 3887-3914 | DOI | MR | Zbl

[4] J. Baik; G. Ben Arous; S. Péché Phase transition of the largest eigenvalue for non-null complex sample covariance matrices (to appear in Ann. Prob., preprint math.PR/0403022, http://arxiv.org/abs/math.PR/0403022)

[5] P. M. Bleher; A. B. J. Kuijlaars Random matrices with external source and multiple orthogonal polynomials, Internat. Math. Research Notices (2004), pp. 109-129 | MR | Zbl

[6] P. M. Bleher; A. B. J. Kuijlaars Large n limit of Gaussian random matrices with external source, part I, Commun. Math. Phys., Volume 252 (2004), pp. 43-76 | DOI | MR | Zbl

[7] A. Borodin Biorthogonal ensembles, Nuclear Phys., B, Volume 536 (1999), pp. 704-732 | MR | Zbl

[8] E. Brézin; S. Hikami Correlations of nearby levels induced by a random potential, Nucl. Phys., B, Volume 479 (1996), pp. 697-706 | DOI | MR | Zbl

[9] E. Brézin; S. Hikami Spectral form factor in a random matrix theory, Phys. Rev., Volume E 55 (1997), pp. 4067-4083 | MR

[10] E. Brézin; S. Hikami Extension of level-spacing universality, Phys. Rev., Volume E 56 (1997), pp. 264-269

[11] E. Brézin; S. Hikami Universal singularity at the closure of a gap in a random matrix theory, Phys. Rev., Volume E 57 (1998), pp. 4140-4149 | MR

[12] E. Brézin; S. Hikami Level spacing of random matrices in an external source, Phys. Rev., Volume E 58 (1998), pp. 7176-7185 | MR

[13] E. Daems; A. B. J. Kuijlaars A Christoffel-Darboux formula for multiple orthogonal polynomials, J. Approx. Theory, Volume 130 (2004), pp. 188-200 | MR | Zbl

[14] Harish-Chandra Differential operators on a semisimple Lie algebra, Amer. J. Math., Volume 79 (1957), pp. 87-120 | DOI | MR | Zbl

[15] T. Imamura; T. Sasamoto Polynuclear growth model GOE 2 and random matrix with deterministic source (preprint math-ph/0411057, http://arxiv.org/abs/math-ph/0411057)

[16] C. Itzykson; J. B. Zuber The planar approximation II, J. Math. Phys., Volume 21 (1980), pp. 411-421 | DOI | MR | Zbl

[17] K. Johansson Universality of the local spacing distribution in certain ensembles of Hermitian Wigner matrices, Comm. Math. Phys., Volume 215 (2001) no. 3, pp. 683-705 | DOI | MR | Zbl

[18] E. Nikishin; V. Sorokin Rational Approximation and Orthogonality, Translations of Mathematical Monographs, 92, Amer. Math. Soc., Providence R.I, 1991 | MR | Zbl

[19] C. Tracy; H. Widom The Pearcey process (preprint math.PR/0412005, http://arxiv.org/abs/math.PR/0412005) | Zbl

[20] W. Van Assche; E. Coussement Some classical multiple orthogonal polynomials, J. Comput. Appl. Math., Volume 127 (2001), pp. 317-347 | DOI | MR | Zbl

[21] P. Zinn-Justin Random Hermitian matrices in an external field, Nuclear Phys., Volume B 497 (1997), pp. 725-732 | MR | Zbl

[22] P. Zinn-Justin Universality of correlation functions of Hermitian random matrices in an external field, Comm. Math. Phys, Volume 194 (1998), pp. 631-650 | DOI | MR | Zbl

Cited by Sources: