We investigate the class of functions associated with the complex Hessian equation .
Nous cherchons la classe de fonctions associées à l’équation complexe .
Keywords: Complex Hessian equation, plurisubharmonic functions
Mot clés : Hessien complexe, fonctions plurisousharmoniques
Blocki, Zbigniew 1
@article{AIF_2005__55_5_1735_0, author = {Blocki, Zbigniew}, title = {Weak solutions to the complex {Hessian} equation}, journal = {Annales de l'Institut Fourier}, pages = {1735--1756}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {55}, number = {5}, year = {2005}, doi = {10.5802/aif.2137}, zbl = {1081.32023}, mrnumber = {2172278}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2137/} }
TY - JOUR AU - Blocki, Zbigniew TI - Weak solutions to the complex Hessian equation JO - Annales de l'Institut Fourier PY - 2005 SP - 1735 EP - 1756 VL - 55 IS - 5 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2137/ DO - 10.5802/aif.2137 LA - en ID - AIF_2005__55_5_1735_0 ER -
%0 Journal Article %A Blocki, Zbigniew %T Weak solutions to the complex Hessian equation %J Annales de l'Institut Fourier %D 2005 %P 1735-1756 %V 55 %N 5 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2137/ %R 10.5802/aif.2137 %G en %F AIF_2005__55_5_1735_0
Blocki, Zbigniew. Weak solutions to the complex Hessian equation. Annales de l'Institut Fourier, Volume 55 (2005) no. 5, pp. 1735-1756. doi : 10.5802/aif.2137. https://aif.centre-mersenne.org/articles/10.5802/aif.2137/
[1] The Dirichlet problem for a complex Monge-Ampère equation, Invent. Math., Volume 37 (1976), pp. 1-44 | DOI | MR | Zbl
[2] A new capacity for plurisubharmonic functions, Acta Math., Volume 149 (1982), pp. 1-41 | DOI | MR | Zbl
[3] Estimates for the complex Monge-Ampère operator, Bull. Pol. Acad. Sci., Volume 41 (1993), pp. 151-157 | MR | Zbl
[4] On the definition of the Monge-Ampère operator in , Math. Ann., Volume 328 (2004), pp. 415-423 | DOI | MR | Zbl
[5] The domain of definition of the complex Monge-Ampère operator preprint. Amer. J. Math. (to appear), http://www.im.uj.edu.pl/~blocki/publ/ | Zbl
[6] Another approach to Liouville theorem, Math. Nachr., Volume 107 (1982), pp. 253-262 | DOI | MR | Zbl
[7] The Dirichlet problem for nonlinear second-order elliptic equations. II. Complex Monge-Ampère, and uniformly elliptic, equations, Comm. Pure Appl. Math., Volume 38 (1985), pp. 209-252 | DOI | MR | Zbl
[8] The Dirichlet problem for nonlinear second order elliptic equations, III: Functions of the eigenvalues of the Hessian, Acta Math., Volume 155 (1985), pp. 261-301 | DOI | MR | Zbl
[9] The general definition of the complex Monge-Ampère operator, Ann. Inst. Fourier, Volume 54 (2004), pp. 159-179 | DOI | Numdam | MR | Zbl
[10] Mesures de Monge-Ampère et mesures plurisousharmoniques, Math. Z., Volume 194 (1987), pp. 519-564 | DOI | MR | Zbl
[11] Potential theory in several complex variables (1991) (preprint)
[12] Monge-Ampère operators, Lelong numbers and intersection theory Complex analysis and geometry, Volume Univ. Ser. Math., Plenum, New York (1993), pp. 115-193 | MR | Zbl
[13] Complex Analytic and Differential Geometry (1997) (, http://www-fourier.ujf-grenoble.fr/~demailly/books.html)
[14] An inequality for hyperbolic polynomials, J. Math. Mech., Volume 8 (1959), pp. 957-965 | MR | Zbl
[15] The Christoffel-Minkowski problem I: Convexity of solutions of a Hessian equation, Invent. Math., Volume 151 (2003), pp. 553-577 | DOI | MR | Zbl
[16] The Dirichlet problem for degenerate Hessian equations, Comm. Partial Diff. Equations, Volume 29 (2004), pp. 219-235 | MR | Zbl
[17] Geometric function theory and non-linear analysis, Clarendon Press (2001) | MR | Zbl
[18] Pluripotential Theory, Clarendon Press, 1991 | MR | Zbl
[19] On the general notion of fully nonlinear second-order elliptic equations, Trans. Amer. Math. Soc., Volume 347 (1995), pp. 857-895 | DOI | MR | Zbl
[20] On the Dirichlet problems for symmetric function equations of the eigenvalues of the complex Hessian, Asian J. Math., Volume 8 (2004), pp. 87-106 | MR | Zbl
[21] On the Dirichlet problem for Hessian equations, Acta Math., Volume 175 (1995), pp. 151-164 | DOI | MR | Zbl
[22] Hessian measures II, Ann. of Math., Volume 150 (1999), pp. 579-604 | DOI | MR | Zbl
[23] Continuity of envelopes of plurisubharmonic functions, J. Math. Mech., Volume 18 (1968), pp. 143-148 | MR | Zbl
[24] Volume and capacity of sublevel sets of a Lelong class of plurisubharmonic functions, Indiana Univ. Math. J., Volume 50 (2001), pp. 671-703 | MR | Zbl
Cited by Sources: