[Distributions asymptotiques de zéros et orthogonalité]
On développe une nouvelle méthode pour établir la distribution asymptotique des zéros de divers polynômes orthogonaux sur un segment. Cette méthode exploite de manière directe les relations d'orthogonalité. Nous l'illustrons dans quatre cas : l'orthogonalité classique par rapport à une mesure positive, l'orthogonalité non-Hermitienne par rapport à une mesure complexe, et l'orthogonalité non-linéaire intervenant en approximation rationnelle, tout d'abord dans le cas d'une mesure positive, puis dans le cas non- Hermitien.
We develop a new method to prove asymptotic zero distribution for different kinds of orthogonal polynomials. The method directly uses the orthogonality relations. We illustrate the procedure in four cases: classical orthogonality, non-Hermitian orthogonality, orthogonality in rational approximation of Markov functions and its non- Hermitian variant.
Keywords: orthogonal polynomials, zero distribution, logarithmic potential, rational approximation
Mot clés : polynômes orthogonaux, distribution des zèros, potentiel logarithmique, approximation rationnelle
Baratchart, Laurent 1 ; Küstner, Reinhold  ; Totik, Vilmos 
@article{AIF_2005__55_5_1455_0, author = {Baratchart, Laurent and K\"ustner, Reinhold and Totik, Vilmos}, title = {Zero distributions via orthogonality}, journal = {Annales de l'Institut Fourier}, pages = {1455--1499}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {55}, number = {5}, year = {2005}, doi = {10.5802/aif.2130}, zbl = {1076.30010}, mrnumber = {2172271}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2130/} }
TY - JOUR AU - Baratchart, Laurent AU - Küstner, Reinhold AU - Totik, Vilmos TI - Zero distributions via orthogonality JO - Annales de l'Institut Fourier PY - 2005 SP - 1455 EP - 1499 VL - 55 IS - 5 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2130/ DO - 10.5802/aif.2130 LA - en ID - AIF_2005__55_5_1455_0 ER -
%0 Journal Article %A Baratchart, Laurent %A Küstner, Reinhold %A Totik, Vilmos %T Zero distributions via orthogonality %J Annales de l'Institut Fourier %D 2005 %P 1455-1499 %V 55 %N 5 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2130/ %R 10.5802/aif.2130 %G en %F AIF_2005__55_5_1455_0
Baratchart, Laurent; Küstner, Reinhold; Totik, Vilmos. Zero distributions via orthogonality. Annales de l'Institut Fourier, Tome 55 (2005) no. 5, pp. 1455-1499. doi : 10.5802/aif.2130. https://aif.centre-mersenne.org/articles/10.5802/aif.2130/
[1] Best rational approximation to Markov functions, J. Approx. Theory, Volume 76 (1994) no. 2, pp. 219-232 | DOI | MR | Zbl
[2] Best meromorphic approximation of Markov functions on the unit circle, Found. Comput. Math., Volume 1 (2001) no. 4, pp. 385-416 | MR | Zbl
[3] An analog to AAK theory for , J. Funct. Anal., Volume 191 (2002) no. 1, pp. 52-122 | DOI | MR | Zbl
[4] Non-uniqueness of rational best approximants, Continued Fractions and Geometric Function Theory (CONFUN), (Trondheim, 1997), J. Comput. Appl. Math., Volume 105 (1999) no. 1-2 | MR | Zbl
[5] Asymptotic error estimates for best rational approximants to Markov functions, J. Approx. Theory, Volume 108 (2001) no. 1, pp. 53-96 | DOI | MR | Zbl
[6] Asymptotic uniqueness of best rational approximants of given degree to Markov functions in of the circle, Constr. Approx., Volume 17 (2001) no. 1, pp. 103-138 | MR | Zbl
[7] Rational approximation in the real Hardy space and Stieltjes integrals: a uniqueness theorem, Constr. Approx., Volume 9 (1993) no. 1, pp. 1-21 | DOI | MR | Zbl
[8] Constructive Approximation, Grundlehren der mathematischen Wissenschaften, 303, Springer-Verlag, Berlin, 1993 | MR | Zbl
[9] Equilibrium distributions and degree of rational approximation of analytic functions, Math. USSR Sb., Volume 62 (1989) no. 2, pp. 305-348 | DOI | MR | Zbl
[10] Advanced Analysis on the Real Line, Universitext, Springer-Verlag, New York, 1996 | Zbl
[11] An integral for functions of bounded variation, J. London Math. Soc., Volume 9 (1934), pp. 174-178 | DOI | Zbl
[12] Asymptotic zero distribution of orthogonal polynomials with respect to complex measures having argument of bounded variation (2003) (Ph.D. thesis, University of Nice Sophia Antipolis, http://www.inria.fr/rrrt/tu-0784.html)
[13] Toeplitz matrix techniques and convergence of complex weight Padé approximants, J. Comput. Appl. Math., Volume 19 (1987) no. 1, pp. 23-38 | MR | Zbl
[14] Analytic Theory of Polynomials (London Math. Soc. Monographs, New Series), Volume 26 (2002) | Zbl
[15] Potential Theory in the Complex Plane (London Math. Soc. Student Texts), Volume 28 (1995) | Zbl
[16] Logarithmic Potentials with External Fields, Grundlehren der mathematischen Wissenschaften, 316, Springer-Verlag, Berlin, 1997 | MR | Zbl
[17] The convergence of Padé approximants to functions with branch points, J. Approx. Theory, Volume 2 (1997) no. 91, pp. 139-204 | MR | Zbl
[18] Orthogonal polynomials with respect to complex-valued measures, Orthogonal Polynomials and their Applications (Erice, 1990) (IMACS Ann. Comput. Appl. Math.), Volume 9 (1990), pp. 139-154 | Zbl
[19] Orthogonal polynomial with complex-valued weight functions I, II, Constr. Approx., Volume 2 (1986) no. 3, p. 225-240, 241251 | MR | Zbl
[20] General Orthogonal Polynomials, Encyclopedia of Mathematics and its Applications, 43, Cambridge University Press, Cambridge, 1992 | MR | Zbl
[21] Interpolation and Approximation by Rational Functions in the Complex Domain, third edition, XX, Amer. Math. Soc., Providence, 1960 | MR | Zbl
Cité par Sources :