
ANNA
LE

S
 D

E

 L’INSTITUT 
FO

U
RIER

ANNALES
DE

L’INSTITUT FOURIER

Laurent BARATCHART, Reinhold KÜSTNER & Vilmos TOTIK

Zero distributions via orthogonality
Tome 55, no 5 (2005), p. 1455-1499.

<http://aif.cedram.org/item?id=AIF_2005__55_5_1455_0>

© Association des Annales de l’institut Fourier, 2005, tous droits
réservés.

L’accès aux articles de la revue « Annales de l’institut Fourier »
(http://aif.cedram.org/), implique l’accord avec les conditions
générales d’utilisation (http://aif.cedram.org/legal/). Toute re-
production en tout ou partie cet article sous quelque forme que ce
soit pour tout usage autre que l’utilisation à fin strictement per-
sonnelle du copiste est constitutive d’une infraction pénale. Toute
copie ou impression de ce fichier doit contenir la présente mention
de copyright.

cedram
Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

http://aif.cedram.org/item?id=AIF_2005__55_5_1455_0
http://aif.cedram.org/
http://aif.cedram.org/legal/
http://www.cedram.org/
http://www.cedram.org/


Ann. Inst. Fourier, Grenoble
55, 5 (2005), 1455–1499

ZERO DISTRIBUTIONS VIA ORTHOGONALITY

by Laurent BARATCHART, Reinhold KÜSTNER
& Vilmos TOTIK(∗)

Dedicated to Zbigniew Ciesielski on his 70th birthday

1. Introduction.

Let µ be a finite positive Borel measure with infinite compact support
S ⊂ R, and consider the corresponding monic orthogonal polynomials
qn(x) = xn + · · · satisfying

(1)
∫

qn(t) tk dµ(t) = 0, k = 0, 1, . . . , n− 1.

Under quite weak hypotheses on the measure µ, it is true [20] Theorem
2.2.1, that the zero distribution of the polynomials qn is asymptotically
equal to the equilibrium measure ωS of S for the logarithmic potential (see
the end of this introduction for a definition). The proofs in the literature
usually go through estimates on the norm of the polynomials. In what
follows, we present a new approach that uses directly the orthogonality
relation (1). Under mild assumptions this approach generalizes to non-
Hermitian orthogonality, that is to the case where µ gets replaced by
some complex measure λ; this cannot be said of classical proofs. See
further motivation for and connection with non-Hermitian orthogonality
in Section 6.

(∗) Supported by NSF grand DMS-0097484 and by OTKA T/034323, TS44782.
Keywords: orthogonal polynomials, zero distribution, logarithmic potential, rational
approximation.
Math. classification: 30C15, 30E10, 30E20, 31A15, 05E35, 42C05.
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Another feature of the present approach, is that it applies to other
kinds of orthogonality relations, like those arising from best rational or
meromorphic approximation with free poles. For example, if the support of
λ lies in the unit disk, the denominator of a best rational approximant of
degree n to the Cauchy transform of λ in L2 of the unit circle satisfies (see
[7], [3]) the relation

(2)
∫

qn(t)
Q 2
n(t)

tk dλ(t) = 0, k = 0, 1, . . . , n− 1,

where Qn is the reflected polynomial associated with qn (see Section 4).
Although (2) looks like ordinary orthogonality with varying weight Q−2

n (t),
it is not so because this weight itself depends on qn. When λ is a
positive measure on [a, b] ⊂ (−1, 1) satisfying the Szegő condition, then
the asymptotic zero distribution of the polynomials qn in (2) is known
(and much beyond, see [2], [5]), but still our result deals with less regular
situations. And when λ is complex, the theorem we prove is first of this kind.
The method also allows one to handle the case of an additional strongly
convergent varying weight function which is relevant in meromorphic
approximation (see [3]).

In this work we shall extensively use logarithmic potential theory.
For fundamental notions like equilibrium measure, potential, capacity,
balayage, as well as the basic theorems concerning them, the reader may
want to consult some recent texts such as [15], [16] or the appendix of
[20]. However, for the reader’s convenience, we review below those concepts
which are systematically refered to in the statements of the present paper.

Let E ⊂ C be a compact set. To support his intuition, one may view
E as a plane conductor and imagine one puts a unit electric charge on it.
Then, if a distribution of charge is described as being a Borel measure µ

on E, the electrostatic equilibrium has to minimize the internal energy

I(µ) =
∫∫

log
1

|z − ζ| dµ(z)dµ(ζ)

among all probability measures supported on E. This is because on the
plane the Coulomb force is proportional to the inverse of the distance
between the particles, and therefore the potential is its logarithm. There
are sets E (called polar sets or sets of zero logarithmic capacity) which
are so thin that the energy I(µ) is infinite, no matter what the probability
measure µ is on E; for those we do not define the equilibrium measure.
But if E is such that I(µ) is finite for some probability measure µ on
E, then there is a unique minimizer for I(µ) among all such probability
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ZERO DISTRIBUTIONS VIA ORTHOGONALITY 1457

measures. This minimizer is called the equilibrium measure (with respect
to logarithmic potential) of E, and we denote it by ωE . For example, the
equilibrium measure of a disk or circle is the normalized arc measure on the
circumference, while the equilibrium measure of a segment [a, b] is given by

dω[a,b](t) =
dt

π
√

(t− a)(b− t)
.

That the equilibrium measure of a disk is supported on its circumference
is no accident: the equilibrium measure of E is always supported on the
outer boundary ∂eE of E.

Associated to a finite positive measure µ on a compact set E is its
logarithmic potential

Uµ(z) =
∫

log
1

|z − ζ| dµ(ζ),

which is superharmonic on C with values in (−∞,+∞]. From the physical
viewpoint, this is simply the electrostatic potential corresponding to the
distribution of charge µ. Perhaps the nicest characterization of ωE among
all probability measures on E is that UωE (z) is equal to some constant D on
E, except possibly on a polar subset of E where it may be less than D. Of
necessity then, we have that D = I(ωE) because measures of finite energy
like ωE do not charge polar sets. Points at which UωE is discontinuous are
called irregular (of necessity they lie on ∂eE), and E itself is said to be
regular if it has no irregular points. All nice compact sets are regular, in
particular all whose boundary has no connected component that reduces
to a point. At the other extreme, a compact polar set consists solely of
irregular points. The simplest example of a polar set is a countable set,
but there also exist uncountable polar sets. The regularity of E is in fact
equivalent to the regularity of the Dirichlet problem in the unbounded
component V of C \E, meaning that for any continuous function f on ∂eE

there is a harmonic function in V which is continuous on V = V ∪ ∂eE and
coincides with f on ∂eE.

The number cap (E) = exp(−I(ωE)) is called the logarithmic capacity

of E, and conventionally polar sets have capacity zero. A property that
holds in the complement of a polar set is said to hold quasi-everywhere.

For U ⊂ C an open set whose boundary ∂U is non-polar, given
ζ ∈ U the Green function of U with pole at ζ is the unique real-valued
function z �→ gU(z, ζ) which is harmonic in U \ {ζ}, bounded outside each
neighbourhood of ζ, that tends to +∞ logarithmically as z tends to ζ,
and to 0 as z tends to w for quasi-every w ∈ ∂U . For instance if ∞ ∈ U
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1458 Laurent BARATCHART, Reinhold KÜSTNER & Vilmos TOTIK

then gU(z,∞) = I(ω
∂U) − Uω

∂U(z); formulas for the general case can be
obtained from this one via conformal mapping. Note that gU(z, ζ) is non-
negative; actually, it is strictly positive on the connected component of U
that contains ζ.

When U is a domain, one can introduce concepts similar to those of
logarithmic potential theory upon replacing the kernel log

(
1/|z−ζ|

)
by the

kernel gU(z, ζ), the Green function of U with pole at ζ. This gives rise to the
notions of Green potential and Green energy for finite positive compactly
supported measures on U , and to the notions of Green equilibrium measure

and Green capacity for compact subsets of U . We use them only when U is
the unit disk, and they will be introduced as needed in Section 4.

2. Real orthogonal polynomials.

In this section, we let µ be a finite positive Borel measure with
compact support S ⊂ R. We shall assume that µ is sufficiently thick, namely
that there exist two constants c, L > 0 such that

(3) µ([x− δ, x + δ]) � c δL for all x ∈ S and for all δ ∈ (0, 1).

Let νn be the normalized counting measure on the zeros of the
polynomials qn satisfying (1), namely the discrete probability measure
having equal mass at each of the zeros (these are simple). The theorem
below asserting the asymptotic behaviour of νn is not new (see [20],
Theorems 2.2.1 and 4.2.5), but our method of proof will serve as a model
for more general situations to come.

Theorem 2.1. — Suppose that the support S of µ is regular with

respect to the Dirichlet problem in C\S, and that (3) holds. Then νn tends

to the equilibrium measure ωS of S in the weak∗ topology as n tends to∞.

Proof. — Let ν be a weak∗ limit point of {νn}, say νn → ν as n→∞,
n ∈ N1. It is well-known (and elementary to check, see [20], Lemma 1.1.3),
that the zeros of the orthogonal polynomials lie in the convex hull of S,
that they are simple, and that each component of R\S can contain at
most one of them. Hence ν is supported on S and it has total mass 1. We

claim: it is enough to prove that there exists a real constant D such that
the logarithmic potential Uν of ν equals D quasi-everywhere on S. Indeed,
the lower semicontinuity of Uν implies then that Uν(x) � D for all x ∈ S.
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Thus, ν has finite logarithmic energy, and, in particular, every polar set
has measure zero with respect to ν and ωS . Now, integrating the equality
“Uν(x) = D for quasi-every x ∈ S” against ωS and interchanging the order
of integration, we get that

D =
∫

Uν(t) dωS(t) =
∫

UωS (t) dν(t) = I(ωS),

and then integrating the same equality against ν yields that ν has the same
logarithmic energy as ωS . By uniqueness of the equilibrium measure (see
[16], Theorem I.3.1) it follows that ν = ωS and, since this is true of every
weak∗ limit point, it follows by means of the Helly selection theorem that
the whole sequence {νn} converges to ωS , as claimed.

Thus, it has left to prove that there exists a real constant D such that
Uν equals D quasi-everywhere on S. Suppose to the contrary that there
exist two constants d ∈ R, τ > 0 and two non-polar Borel sets E−, E+ ⊂ S

such that

Uν(x) � d− 2τ for x ∈ E− and Uν(x) � d + τ for x ∈ E+

(this is the only alternative for Uν is finite quasi-everywhere on S since it
is a superharmonic function on C which is clearly not identically +∞).

We contend that there exists a point y0∈supp(ν) such that Uν(y0)>d.
For if not Uν(x) � d for all x ∈ supp(ν), so by the maximum principle for
potentials (see e.g. [16], Corollary II.3.3) the same inequality holds for all
z ∈ C, a contradiction since on E+ we have bigger values for Uν . This

proves our contention.

According to the principle of descent (see e.g. [16], Theorem I.6.8),
which is valid since the support of νn remains in a fixed compact set (namely
the convex hull of S), we subsequently have

lim inf
n→∞, n∈N1

Uνn(zn) � Uν(y0) > d

for any sequence zn → y0. Therefore there exist ρ > 0 and N1 such that,
for y ∈ [y0 − 2ρ, y0 + 2ρ] and n � N1, n ∈ N1, the inequality Uνn(y) � d

holds. By the definition of νn and of the logarithmic potential, this means
that

(4) |qn(y)| � e−nd, y ∈ [y0 − 2ρ, y0 + 2ρ], n � N1, n ∈ N1.

We shall use that this inequality remains true (at the cost perhaps of
increasing N1) if {qn} gets replaced by any sequence of monic polynomials
{pn} having the same asymptotic zero distribution ν and whose zeros are
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uniformly bounded, for these were the only facts we used in deriving (4).
This is true even if pn does not have exact degree n (the counting measure
of the zeros being still normalized with n), but merely degree n + o(n).

In another connection, the lower envelope theorem (see [16], Theorem
I.6.9) implies that for quasi-every x ∈ E− we have

lim inf
n→∞, n∈N1

Uνn(x) = Uν(x) � d− 2τ,

and since the logarithm of |qn(x)|−1/n stands on the left, we deduce that
for some subsequence N2 ⊂ N1 and for sufficiently large n ∈ N2, say for
n � N2,

(5) Mn := max
x∈S
|qn(x)| � e−n(d−τ).

Our hypothesis that S is regular means: the Green function of C\S
with pole at ∞ is such that

λ(ε) := max
dist(z,S)�2ε

g
C\S(z,∞)

tends to zero as ε→ 0. According to the Bernstein-Walsh lemma (see e.g.
[21], p. 77 or [15], Theorem 5.5.7), we have that

|qn(z)| �Mn exp
(
n g

C\S
(z,∞)

)
�Mne

nλ(ε) if z ∈ C\S, dist(z, S) � 2ε.

From this it follows on differentiating the Cauchy formula that

|q′n(z)| � Mne
nλ(ε)

ε
if dist(z, S) � ε,

where q′n(z) indicates the derivative. Thus, if we let xn ∈ S be a point
where |qn(x)| attains its maximum on S (i.e. |qn(xn)| = Mn) and if x ∈ R
is such that

(6) |x− xn| �
ε

2enλ(ε)
,

we obtain from the mean-value theorem the estimate:

|qn(x)| � |qn(xn)| − |qn(x)− qn(xn)| � |qn(xn)| −Mn/2 = Mn/2.

For fixed ε > 0, the interval defined by (6) is contained in [xn − ρ, xn + ρ]
when n is sufficiently large since λ(ε) > 0, and therefore by (3) and (5) we
get that∫
S∩[xn−ρ,xn+ρ]

|qn(t)|2 dµ(t) �
(
Mn

2

)2

c
( ε

2enλ(ε)

)L
� c

4

( ε

2enλ(ε)

)L
e−2n(d−τ)

� e−2nd+nτ(7)
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for n ∈ N2 and, say, n � N3 = N3(ε), provided ε > 0 is so small that
λ(ε)L < τ .

Observe now that, for sufficiently large n ∈ N1, there are arbitrarily
many zeros of qn in [y0 − ρ, y0 + ρ] because y0 lies in the support of the
limit measure ν. In particular there will be two such zeros, say αn < βn,
as soon as n ∈ N1 is sufficiently large, say n � N4. For n ∈ N2 with
n � max(N1, N2, N3, N4), consider the polynomial Pn−2(x) = qn(x)/((x−
αn)(x − βn)) of degree n − 2. Obviously qn(x)Pn−2(x) is nonnegative for
x ∈ R\(αn, βn). Moreover, since τ > 0 and |qn(xn)| = Mn, it follows from
(4) and (5) that xn �∈ [y0−2ρ, y0+2ρ], and thus [xn−ρ, xn+ρ]∩(αn, βn) = ∅.
Consequently, since αn and βn lie in the convex hull of S, we obtain on the
one hand from (7) that for large n ∈ N2

(8)
∫
S\(αn,βn)

qn(t)Pn−2(t) dµ(t) � 1
(diam(S))2

e−2nd+nτ ,

where diam(S) was used to indicate the diameter of S.

On the other hand, the limit distribution of the zeros of the polyno-
mials Pn−2, n ∈ N2, n � N4, is again ν, and these zeros remain bounded
as they lie in the convex hull of S so that, as pointed out after (4), we also
have

|Pn−2(y)| � e−nd, y ∈ [y0 − 2ρ, y0 + 2ρ],

for sufficiently large n ∈ N2. We thus obtain from this and (4) the estimate

(9)

∣∣∣∣∣
∫
S∩(αn,βn)

qn(t)Pn−2(t) dµ(t)

∣∣∣∣∣ � µ
(
S ∩ (αn, βn)

)
e−2nd � µ(S)e−2nd.

But the sum of the two integrals in the left-hand sides of (8) and (9)
should be zero by orthogonality, which is clearly impossible because, as an
inspection of the right-hand sides shows, the first integral is much bigger
than the second one for large n ∈ N2 since τ > 0.

This contradiction proves the theorem. ��

3. Non-Hermitian orthogonal polynomials.

Let λ be a complex Borel measure having compact support S ⊂ R,
and consider an associated sequence of monic non-Hermitian orthogonal

TOME 55 (2005), FASCICULE 5
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polynomials, i.e. a sequence of polynomials qn(x) = xdn + · · · with dn � n

such that

(10)
∫

qn(t) tk dλ(t) = 0, k = 0, 1, . . . , n− 1.

Although the orthogonalization process can no longer be used here, the
existence of such a sequence {qn} is guaranteed by elementary linear algebra
since n linear homogeneous equations in n + 1 unknowns always have a
nontrivial solution. Therefore, there exist a0,n, a1,n, . . . , an,n, not all zero,
such that ∫  n∑

j=0

aj,n t
j

 tkdλ(t) = 0, k = 0, 1, . . . , n− 1,

and now if adn,n is the highest non-vanishing coefficient, then a normal-
ization gives (10). This time, however, qn need not be unique nor have
exact degree n. In fact (10) has exactly one monic solution of minimal
degree, which divides all other solutions, and when there exists another so-
lution, say of degree m, then every monic polynomial of degree at most m

which is a multiple of the minimal degree solution is in turn a solution (see
[18], Lemma 1). Therefore, there is a certain inaccuracy in the words “a
sequence of monic non-Hermitian orthogonal polynomials associated with
λ”. Hereafter, we simply assume that some monic polynomial qn of degree
dn � n satisfying (10) has been chosen for each n � 1, for the results will
not depend on the precise choice of qn meeting these requirements. Note
that if the support of λ is infinite then dn necessarily goes to infinity with
n, as follows easily from the uniform density of polynomials in the space
of continuous functions on S. The hypotheses on λ to come will in fact
ensure much more, namely they imply that n − dn remains bounded (see
Lemma 3.2). For that very reason, it does not matter in convergence issues
whether the zero counting measure νn of qn is formed by putting mass k/dn
or mass k/n at each zero of qn of multiplicity k. For definiteness, we make
the former definition so that νn is still a probability measure.

About the complex Borel measure λ we assume that it is of the form

(11) dλ(t) = eiϕ(t)dµ(t),

where ϕ is a real function of bounded variation on the support of µ, and
µ is a finite positive Borel measure satisfying the properties set forth in
Section 2, i.e. its support S ⊂ R is a regular compact set with respect to the
Dirichlet problem in C \S and (3) holds. This is equivalent to require that
the complex measure λ has regular compact support S ⊂ R and moreover,
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letting µ = |λ| be the total variation of λ, that the Radon-Nikodym
derivative of λ with respect to µ is of bounded variation on S (more
precisely that it coincides µ-a.e. with a function of bounded variation).
Indeed, this derivative is necessarily unimodular µ-a.e. so that (11) holds
for some argument function ϕ, and it is quite easy to see that eiϕ is of
bounded variation on S if, and only if, ϕ itself can be chosen of bounded
variation there.

Note that, in the present setting, qn may have nonreal zeros so that, in
general, its zero counting measure νn is not supported on the convex hull of
S. However, the next theorem entails that it tends to be so asymptotically,
at least in proportion.

Theorem 3.1. — With the preceding assumptions on λ, the mea-

sure νn tends to the equilibrium measure ωS of S in the weak∗ topology as

n tends to ∞.

For the proof of Theorem 3.1, we shall rely on a lemma which is of
independent interest. This lemma does not require µ to satisfy (3), nor that
S be regular but only that it is infinite. To state this result, we need some
more pieces of notation as follows.

First, for z ∈ C we let Arg(z) ∈ (−π, π] denote the principal branch
of the argument, making the agreement that Arg(0) = π, so that Arg is
left-continuous on R. Next, for a, b ∈ R, a � b, and ξ ∈ C, we define the
angle
(12) Angle(ξ, [a, b]) = |Arg(a− ξ)−Arg(b− ξ)| ∈ [0, π]
in which the interval [a, b] is seen at ξ, so that Angle(ξ, [a, b]) = π if and
only if ξ ∈ [a, b].

Now, suppose that S ⊆ ∪mj=1[aj , bj ] where the [aj , bj ] are disjoint real
closed intervals, with a1� b1 < a2 � b2 < · · · < am� bm. We define

θ(ξ) =
m∑
j=1

Angle(ξ, [aj , bj ]) ∈ [0, π]

which is the total angle in which ∪mj=1[aj , bj ] is seen at ξ. Note that θ(ξ) � π,
since the union is disjoint hence θ(ξ) � Angle(ξ, [a1, bm]) � π, and that
θ(ξ) = π if, and only if, ξ ∈ ∪mj=1[aj , bj ].

Finally, we denote by
(13)

V (ϕ, S) = sup


k∑

j=1

|ϕ(xj)− ϕ(xj−1)| : k ∈ N, {x0<x1<. . .<xk} ⊆ S
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the total variation of ϕ on S.

Lemma 3.2. — Let qn(z) =
∏ dn
k=1(z − ξk), dn � n, be an n-th

orthogonal polynomial in the sense of (10). Under the sole hypothesis that

the support S of λ is an infinite compact subset of the real line, it holds

with the previous notations that

(14)
dn∑
k=1

(
π − θ(ξk)

)
+ (n− dn)π � V (ϕ, S) + (m− 1)π,

where ϕ is any argument for dλ/d|λ| on S, i.e. (dλ/d|λ|)(t) = eiϕ(t) for

t ∈ S.

It follows from the lemma that the defect n− dn in the degree of qn
is at most V (ϕ, S)/π and therefore remains uniformly bounded whenever
ϕ can be chosen of bounded variation. To see it, apply the case m = 1 of
Lemma 3.2 with [a1, b1] being the convex hull of S, and recall that θ(ξk) � π

for k = 1, 2, . . . , dn. In particular when V (ϕ, S) = 0, there can be no defect
and all the zeros lie in the convex hull of S. This is for instance the case
when λ � 0, and then it is a well-known result.

Corollary 3.3. — Under the hypotheses of Lemma 3.2 and the

additional assumption that V (ϕ, S) < ∞, then to every open neighbour-

hood U of S there is a constant cU such that qn has at most cU zeros

outside U .

The corollary is immediate for U∩R consists of disjoint open intervals,
finitely many of which contain the compact S; call them I1, . . . , Im, and pick
[aj , bj ] ⊂ Ij such that S ⊆ ∪mj=1[aj , bj ] ⊂ U to apply Lemma 3.2, noting
that a zero outside U contributes to the left-hand side of (14) by more than
a fixed positive constant that depends only on ∪mj=1[aj , bj ] and U .

Proof of Lemma 3.2. — We may restrict to the case V (ϕ, S) < ∞
otherwise there is nothing to prove. We may also assume that ϕ is defined
and of bounded variation on the whole real line upon extending it linearly
to the finite complementary intervals of S while making it constant and
equal to ϕ(a) (resp. ϕ(b)) on (−∞, a) (resp. (b,+∞)), where [a, b] is the
convex hull of S. This extension has the same total variation. Also, we can
suppose that every jump of ϕ has size at most π, for by the finiteness of
the variation there are only finitely many discontinuity points where it is
not so, and then we can always add to ϕ a piecewise constant function with
jumps in multiples of 2π to convert all jumps of size greater than π into

ANNALES DE L’INSTITUT FOURIER
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jumps of size at most π. This modification can only decrease the variation,
and therefore will not affect the validity of (14).

For the proof, we may further assume that qn has no zeros on
∪mj=1[aj , bj ]. Indeed, putting dµ1(t) = (t − ξk)2dµ(t) and qn−1(x) =
qn(x)/(x− ξk), we have

(15)
∫

qn−1(t)tk eiϕ(t)dµ1(t) = 0, k = 0, 1, . . . , n− 2;

but if ξk ∈ ∪mj=1[aj , bj ] then µ1 is again positive and θ(ξk) = π, so we are
back to prove the lemma with n−1 instead of n, with dn−1 instead of dn,
with qn−1 instead of qn, and with µ1 instead of µ. Proceeding recursively,
we reach a situation where qn has no zero on ∪mj=1[aj , bj ] or where n = 1
and either dn = 1 with the only zero of q1 lying on ∪mj=1[aj , bj ] or else
dn = 0, i.e. q1 = 1. But if dn = n = 1 and q1(x) = x − ξ1 with θ(ξ1) = π,
then (14) is trivial for its left-hand side vanishes, while if n = 1, dn = 0
and q1 = 1, then (14) holds because the relation

∫
eiϕ(t)dµ(t) = 0 entails

V (ϕ, S) � π (otherwise eiϕ(t) lies in a sector of aperture strictly less than
π so the previous integral cannot vanish by the positivity of µ).

Thus we can safely assume that qn has no zero on ∪mj=1[aj , bj ], in
which case ψ(t) =

∑dn
k=1 Arg(t−ξk) is an argument function for qn(t) which

is continuous on a neighbourhood of ∪mj=1[aj , bj ]. Then f(t) = ψ(t) + ϕ(t)
is an argument function for qn(t)eiϕ(t), and it is of bounded variation on
R, has left and right limits f(x−) and f(x+) at every x ∈ ∪mj=1[aj , bj ], and
it has the same discontinuities as ϕ there (at most countably many). In
particular we have f(x−) = f(x) if x = aj and f(x+) = f(x) if x = bj , due
to the way we extended ϕ from S to R at the beginning of the proof. For
every x ∈ ∪mj=1[aj , bj ], we let I±f (x) denote the half-open (possibly empty)
interval whose endpoints are f(x) and f(x±) with f(x) excluded. By the
connected graph of f over [aj , bj ], we mean the set{

(x, y) ∈ R× R : x ∈ [aj , bj ], y ∈ {f(x)} ∪ I−f (x) ∪ I+
f (x)

}
.

Thus, the connected graph of f over [aj , bj ] can be visualized as its ordinary
graph plus all the vertical segments that represent the jumps of f on [aj , bj ].

We will show that

(16)
m∑
j=1

V (f, [aj , bj ]) � (n−m + 1)π,

and this will imply (14). Indeed, the monotonicity of ϑk(t) = Arg(t − ξk)
with respect to t ∈ R yields

Angle(ξk, [aj , bj ]) = |ϑk(aj)− ϑk(bj)| = V (ϑk, [aj , bj ])
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and, since f = ϕ+ψ = ϕ+
∑ dn

k=1 ϑk while V (ϕ, S) = V (ϕ,R), we get that
m∑
j=1

V (f, [aj , bj ]) �
m∑
j=1

V (ϕ, [aj , bj ]) +
m∑
j=1

dn∑
k=1

V
(
ϑk, [aj , bj ]

)
� V (ϕ,R) +

dn∑
k=1

m∑
j=1

Angle(ξk, [aj , bj ])

= V (ϕ, S) +
dn∑
k=1

θ(ξk),

where we used for the second inequality that the union ∪mj=1[aj , bj ] is
disjoint.

Thus, it has left to prove (16). Suppose to the contrary that

(17)
m∑
j=1

V (f, [aj , bj ]) < (n−m + 1)π.

For u ∈ R let N(u, f, [aj , bj ]) be the (possibly infinite) number of inter-
sections of the line y = u with the connected graph of f over [aj , bj ]. In
this evaluation, an intersection at (x, u) is counted twice if u lies in both
I−f (x) and I+

f (x). As f is bounded on [aj , bj ], being of bounded variation
there, we can define Lj to be the smallest integer such that |f(x)| � Ljπ

for all x ∈ [aj , bj ], and then we have that N(u, f, [aj , bj ]) = 0 for |u| > Ljπ.
Now, Kestelman’s generalization (see [11] or [10], page 129) of Banach’s
indicatrix theorem implies that

(18)
∫ Ljπ

−Ljπ
N(u, f, [aj , bj ]) du = V (f, [aj , bj ]).

Thus, if for u ∈ [0, π] we define

Nπ(u, f, [aj , bj ]) =
Lj−1∑
�=−Lj

N(u + 5π, f, [aj , bj ]),

then we deduce from (18) that∫ π

0

Nπ(u, f, [aj , bj ]) du = V (f, [aj , bj ]).

Adding up over j = 1, 2. . . . ,m and using that Nπ(u, f, [aj , bj ]) ∈
{0, 1, . . . ,+∞} we can infer from (17) that there exists a set E ⊂ [0, π]
of positive Lebesgue measure such that

(19)
m∑
j=1

Nπ(u, f, [aj , bj ]) � n−m for all u ∈ E.
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Pick u0 ∈ E which is not equal modulo π to any value f(aj), f(aj+),
f(bj−) or f(bj) for j = 1, 2, . . . ,m, nor to any value f(x−), f(x) or f(x+)
for x a discontinuity point of f in ∪mj=1[aj , bj ] . This is possible since these
values form a countable set, whereas E has positive Lebesgue measure. We
will show that there exists a monic polynomial Pn−1 of degree at most n−1
such that either

(20) Im
(
e−iu0qn(t)Pn−1(t)eiϕ(t)

)
� 0, t ∈ ∪mj=1[aj , bj ],

or

(21) Im
(
e−iu0qn(t)Pn−1(t)eiϕ(t)

)
� 0, t ∈ ∪mj=1[aj , bj ],

where the inequality is strict except perhaps for finitely many values of t.
However, (20) and (21) are then equally impossible, because by (10) and
(11) ∫

e−iu0qn(t)Pn−1(t)eiϕ(t)dµ(t) = 0,

whereas taking the imaginary part we get the integral, against the positive
measure µ with infinite support S, of a function having constant sign which
is non-zero at all but finitely many points. This contradiction will prove
(16), pending the proof of either (20) or (21) with strict inequality at all
but finitely many values of t for some polynomial Pn−1 of degree at most
n− 1.

To construct the polynomial Pn−1, paint red on the plane all the
horizontal strips u0+2lπ < y < u0+(2l+1)π with l ∈ Z, and let G be their
union; and paint white the remaining strips u0 + (2l − 1)π < y < u0 + 2lπ
with l ∈ Z. The connected graph of f over [aj , bj ] intersects the boundary
∂G of G (i.e. the union of the lines y = u0 + lπ with l ∈ Z) above those
abscissa x ∈ [aj , bj ] which are either a continuity point of f such that
(x, f(x)) ∈ ∂G or else a discontinuity point where at least one of the two
vertical segment {x} × I−f (x), {x} × I+

f (x) is bicolour (remember that all
jumps have size at most π and if x is a discontinuity point that neither
(x, f(x−)) nor (x, f(x)) nor (x, f(x+)) can lie on ∂G, by our choice of u0).
In the first case the multiplicity of the intersection is 1, and in the second
case it is equal to the number of bicolour segments, i.e. 1 or 2. By definition
the sum of all multiplicities is Nπ(u0, f, [aj , bj ]) which is bounded by n−m,
according to (19), since u0 ∈ E; in particular, there are only finitely many
intersections and they occur at isolated abscissa that we call the intersection

abscissa of f over [aj , bj ]. Among those, we further distinguish the crossing

abscissa where the connected graph of f actually crosses ∂G, meaning that
either x is an intersection abscissa which is a continuity point of f and there
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exists ε > 0 such that (t, f(t)) is red for t ∈ (x− ε, x) (resp. t ∈ (x, x + ε))
and white for t ∈ (x, x+ ε) (resp. t ∈ (x− ε, x)), or else x is an intersection
abscissa where f is discontinuous (in this case it is automatically a crossing
abscissa). We also say that the (ordinary) graph of f starts inside (resp.
outside) G at aj if (aj , f(aj)) is red (resp. white) (remember that (aj , f(aj))
cannot lie on ∂G, by our choice of u0).

Now, if x1,j , x2,j , . . . , xnj ,j denote the crossing abscissa of f over
[aj , bj ] with respective multiplicities m1,j ,m2,j , . . . ,mnj ,j , let us define

Rj(x) =
nj∏
k=1

(x− xk,j)mk,j and ψj(t) =
nj∑
k=1

mk,j Arg(t− xk,j)

so that Rj(x) is a real polynomial of the variable x and ψj(t) is an argument
function for Rj(t). A moment’s thinking will convince the reader that the
(ordinary) graph of

fj(t) = f(t) + ψj(t) = ψ(t) + ψj(t) + ϕ(t)

over [aj , bj ] is either completely red or completely white, except for those t

that are intersection abscissa of f (whether the graph is red or white except
at such intersection abscissa depends whether aj is a crossing abscissa or
not, and whether the graph starts inside or outside G at aj). Therefore,
as fj(t) is an argument function for qn(t)Rj(t)eiϕ(t) and since the latter is
a real multiple of eiu0 at intersection abscissa of f (because Rj(t) is real
and vanishes at crossing abscissa while qn(t)eiϕ(t) has argument u0 modulo
π at non-crossing intersection abscissa), we can conclude in any case that
either

(22) Im
(
e−iu0qn(t)Rj(t)eiϕ(t)

)
� 0, t ∈ [aj , bj ],

or

(23) Im
(
e−iu0qn(t)Rj(t)eiϕ(t)

)
� 0, t ∈ [aj , bj ],

where the inequality is strict except at intersection abscissa of f .

Geometrically, the above procedure may be described as follows.
Suppose to fix ideas that the graph of f starts at aj inside G. Then, a
simple zero of Rj placed at a crossing abscissa xk,j where the graph would
leave a red strip pushes the graph down by π, so that the graph continues in
a red strip, while ensuring that the left-hand side of (22) is equal to zero at
the point t = xk,j (where the colour is not under control); and if the graph
does not leave a red strip, except for the point (xk,j , f(xk,j)) which is white
(in which case the intersection multiplicity mk,j is 2), we place a double
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zero at xk,j to push the graph down by 2π, so that it continues in the next
red strip while ensuring that the left-hand side of (22) is again equal to
zero at t = xk,j . Finally, a non-crossing intersection abscissa requires no
treatment, because the graph remains red locally while at the abscissa itself
(where the colour is not defined) we have already seen that the left-hand
side of (22) is zero.

Now, since Rj is monic and all its zeros lie in [aj , bj ], it holds that
Rj(t) > 0 for all t > bj , and either Rj(t) > 0 or Rj(t) < 0 for all t < aj
(whether Rj(t) is always strictly positive or always strictly negative for
such t depends whether its degree is even or odd). Consequently, since the
union ∪mj=1[aj , bj ] is disjoint and each Rj satisfies either (22) or (23), the
monic polynomial R(x) =

∏m
j=1 Rj(x) satisfies for each j = 1, 2, . . . ,m that

either

(24) Im
(
e−iu0qn(t)R(t)eiϕ(t)

)
� 0, t ∈ [aj , bj ],

or

(25) Im
(
e−iu0qn(t)R(t)eiϕ(t)

)
� 0, t ∈ [aj , bj ],

and in any case the inequality is strict except at the intersection abscissas
of f .

Let K denote the set of all indices k ∈ {1, 2, . . . ,m − 1} such that
either (24) holds for j = k and (25) holds for j = k + 1 or else (25) holds
for j = k and (24) holds for j = k + 1. Subsequently, we define the monic
polynomials:

Q(x) =
∏
k∈K

(
x− bk+ ak+1

2

)
and Pn−1(x) = Q(x)R(x) = Q(x)

m∏
j=1

Rj(x).

Because Q(t) changes sign in between every pair of consecutive intervals
[aj , bj ] meeting distinct inequalities from (24)-(25), it follows at once
that Pn−1 satisfies either (20) or (21), and in any case the inequality is
strict except at the intersection abscissas of f in ∪mj=1[aj , bj ]. In another
connection, the degree of Rj is

∑nj
k=1 mk,j which is the number of crossing

abscissa of f over [aj , bj ] (counting multiplicity) hence it is a fortiori

bounded by the number of intersections abscissa over [aj , bj ] (counting
multiplicity), namely by Nπ(u0, f, [aj , bj ]). Moreover, it is clear that Q has
degree at most m − 1. Therefore, as u0 ∈ E, we can conclude from (19)
that the degree of Pn−1 is at most n − 1, as required. This completes the
proof of Lemma 3.2. ��

To establish Theorem 3.1, we need another lemma that is reminiscent
of the previous proof, but which is actually much simpler since we do not
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care about the degree of the polynomial involved. Recall that Arg(z) ∈
(−π, π] denotes the principal branch of the argument and we made the
agreement that Arg(0) = π.

Lemma 3.4. — Let ϕ be a real function of bounded variation on

an interval [a, b]. Then there exists a polynomial T �= 0 and a constant

δ ∈ (0, π/16) such that

(26)
∣∣∣Arg

(
eiϕ(x)T (x)

)∣∣∣ < π/2− 2δ for x ∈ [a, b], T (x) �= 0.

Proof. — Up to the addition of a piecewise constant function taking
values in integer multiples of 2π, we may assume as in the proof of
Lemma 3.2 that the jumps of ϕ all lie in the interval (−π, π] because there
are only finitely many jumps that are not already so.

We first suppose that ϕ is left continuous. Let x1, . . . , xk ∈ [a, b]
denote the points where ϕ(xj+) − ϕ(xj) = π, and set ψ(x) = ϕ(x) −∑ k

j=1 Arg(x− xj). The function ψ is of bounded variation and left contin-
uous on [a, b], and all its jumps are strictly less than π in absolute value.
Let γ = supx∈[a,b] |ψ(x+)−ψ(x)| be the supremum of the absolute value of
its jumps. Then γ < π and there exists a continuous real function f such
that |ψ(x)− f(x)| < (γ +π)/4 for all x ∈ [a, b]. Let 0 < δ < (π− γ)/16. By
the Weierstrass approximation theorem, there exists a polynomial T0 such
that |e−if(x) − T0(x)| < δ for all x ∈ [a, b]. Now, for x ∈ [a, b] we have that
|eif(x)T0(x)− 1| < δ thus |Arg(eif(x)T0(x))| < δπ/2 < 2δ, and therefore:∣∣Arg

(
eiψ(x)T0(x)

)∣∣< (γ + π)/4 + 2δ = π/2− (π − γ)/4 + 2δ < π/2− 2δ.

Consequently the polynomial T (x) = T0(x)
∏ k
j=1(x− xj) satisfies (26).

In the general case (when ϕ is not left continuous) ϕ can be written as
the sum of a left continuous function of bounded variation, say ϕ1, plus an
absolutely convergent series

∑∞
j=1 ψj of functions ψj such that ψj = 0 on

[a, b] except in one point ξj where ψj(ξj) = yj , say. We apply the previous
part of the proof to ϕ1, and we select finitely many yj such that the sum
of the absolute values of the remaining ones is less that δ. Putting an
additional double zero of T at each ξj corresponding to a selected yj yields
(26) with δ replaced by δ/2. ��

Proof of Theorem 3.1. — Let ν be a weak∗ limit point of {νn}. By
Corollary 3.3 this ν is supported on S and it has total mass 1. Following
the proof in the preceding section, it is again sufficient to show that there
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exists a real constant D such that the potential Uν of ν equals D quasi-
everywhere on S.

We first suppose that the zeros of the polynomials qn remain in

a bounded set. We argue by contradiction exactly as in Theorem 2.1,
following the argument there up to the choice of Pn−2. In this connection,
it must be stressed that the principle of descent that led to (4) is valid
because we assume that no zero of qn can go to infinity. In fact, up to
(7) everything remains true word for word with the degree n replaced by
dn = deg(qn). In particular, (7) takes the form

(27)
∫
S∩[xn−ρ,xn+ρ]

|qn(t)|2dµ(t) � e−2dnd+dnτ ,

xn being a point where |qn| attains its maximum on S.

By assumption the argument function ϕ of the measure λ is of
bounded variation on the support S of λ. We extend ϕ from S to the convex
hull [a, b] of S, as we did it at the beginning of the proof of Lemma 3.2,
and we pick δ ∈ (0, π/16) together with a polynomial T (x), say, of degree k

meeting (26). If ck is the leading coefficient of T , we get from the Boutroux-
Cartan lemma (see [14]) that

|T (z)| � |ck|
( ε

8enλ(ε)+1

)k
outside a union of at most k open disks, the sum of whose radii is at most
ε/(4enλ(ε)). Using this it is easy to see from the proof of (7) that (27) is
also true in the form

(28)
∫
S∩[xn−ρ,xn+ρ]

|qn(t)|2|T (t)|dµ(t) � e−2dnd+dnτ

when dn is large enough, provided ε > 0 is so small that λ(ε)(k + L) < τ .

Define 25 to be the smallest even integer which is strictly larger than
k, and recall from (4) the definition of ρ and y0. For η > 0, denote by
Nη([y0 − ρ/2, y0 + ρ/2]) the η-neighbourhood of [y0 − ρ/2, y0 + ρ/2] in C.
By the continuity of Arg(z) in Rez > 0 and since 25 is even, we can choose
η � ρ/2 so small that, whenever z1, . . . z2� ∈ Nη([y0 − ρ/2, y0 + ρ/2]), one
has:

(29)
∣∣Arg

(
Π2�
j=1(x− zj)

)∣∣ < δ for x ∈ R \ [y0 − ρ, y0 + ρ].

Now, for n sufficiently large, pick αn,1, αn,2, . . . , αn,2� to be 25 zeros of qn
in Nη([y0−ρ/2, y0 +ρ/2]), counting multiplicities. This is possible because
for large n (hence large dn since n−dn is bounded as we saw after the proof
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of Lemma 3.2), there are certainly 25 zeros lying in that neighbourhood as
y0 belongs to the support of the limit measure ν. Consider the polynomial

(30) Pn−1(z) =
qn(z)T (z)∏ 2�
j=1(z − αn,j)

which has degree at most n − 1 since k < 25. By Lemma 3.4 the absolute
value of the argument of eiϕ(x)T (x) is smaller than π/2 − 2δ for all
x ∈ [a, b] such that T (x) �= 0. Thus, from (29) and (30), we get for
all x ∈ [a, b] \ [y0 − ρ, y0 + ρ] with qn(x)Pn−1(x) �= 0 that the absolute
value of the argument of qn(x)Pn−1(x)eiϕ(x) is smaller than π/2 − δ,
hence its real part is at least |qn(x)Pn−1(x)| sin(δ) > 0. Consequently, as
xn /∈ [y0 − 2ρ, y0 + 2ρ] so that [y0 − ρ, y0 + ρ] ∩ [xn − ρ, xn + ρ] = ∅, we
obtain from (28) and (30) that

Re
∫
S\[y0−ρ,y0+ρ]

qn(t)Pn−1(t) dλ(t)

�
∫
S∩[xn−ρ,xn+ρ]

Re
(
qn(t)Pn−1(t)eiϕ(x)

)
dµ(t)

�
∫
S∩[xn−ρ,xn+ρ]

sin(δ)
|qn(t)|2|T (t)|

(diam(S) + ρ)2�
dµ(t)

� sin(δ)

(diam(S) + ρ)2�
e−2dnd+dnτ(31)

as soon as n ∈ N2 is large enough, where we used in the next to last
inequality that the distance from αn,j to y0 ∈ S is at most ρ/2 + η � ρ.

In another connection, the limit distribution of the zeros of the
polynomials Pn−1, n ∈ N2, is again ν for T is fixed and we only discarded a
fixed amount of 25 zeros αn,1, αn,2, . . . , αn,2l from qn(z) whose asymptotic
zero distribution is the same as qn because ν is supported on R. Therefore,
as we already remarked after (4), we also have since ck is the leading
coefficient of Pn−1 that

|Pn−1(y)| � |ck|e−dnd, y ∈ [y0 − 2ρ, y0 + 2ρ],

for sufficiently large n ∈ N2. From this and (4) (with dnd instead of nd) we
obtain that

(32)

∣∣∣∣∣
∫
S∩[y0−ρ,y0+ρ]

qn(t)Pn−1(t) dλ(t)

∣∣∣∣∣ � µ
(
S ∩ [y0 − ρ, y0 + ρ]

)
|ck|e−2dnd

for sufficiently large n ∈ N2. But the sum of the two integrals on the left-
hand sides of (31) and (32) should be zero for qn satisfies the orthogonality
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relation (10). This is clearly not the case when n (thus dn) is sufficiently
large, in view of the estimates (31)-(32) and the fact that τ > 0, because
the first integral is larger in modulus that its real part which is itself much
bigger than the modulus of the second integral. This contradiction proves
the theorem when the zeros of the polynomials qn remain bounded.

In the general case, we see from Corollary 3.3 that at most a fixed
number of zeros of qn, say N , can leave every compact subset of C as n goes
large. Refining the subsequence N1 if necessary, we may therefore assume
that exactly m zeros of qn actually go to infinity while the remaining dn−m
zeros remain bounded, where m is some integer which is no larger than N .
We denote the zeros that go to infinity by

ξ
(n)
1 , ξ

(n)
2 , . . . , ξ(n)

m ,

and we put

p(n)
m (t) = Πm

j=1

(
t− ξ

(n)
j

)
, q∗n(t) =

qn(t)

p
(n)
m (t)

.

Note that q∗n has degree at most n−m, that its zeros remain bounded, and
that it satisfies the orthogonality relations:

(33)
∫

q∗n(t)tkeiϕ(t)
∣∣∣p(n)
m (t)

∣∣∣2 dµ(t) = 0, k = 0, . . . , n−m− 1.

For n large we certainly have that ξ
(n)
j �= 0, so we can define a sequence of

positive measures by setting

dµ(n)(t) =

∣∣∣∣∣ p
(n)
m (t)

Πm
j=1ξ

(n)
j

∣∣∣∣∣
2

dµ(t), n ∈ N1, n large enough,

and upon renormalizing (33) we get:∫
q∗n(t)tkeiϕ(t)dµ(n)(t) = 0, k = 0, . . . , n−m− 1.

Because the asymptotic zero distribution of qn and q∗n is the same, we would
be done if only we could apply the first part of the proof to q∗n with n−m

instead of n and µ(n) instead of µ. Although µ(n) depends on n, this is
indeed possible provided that the constant c in (3) can be made uniform
with respect to n, and provided also that the total mass remains bounded
independently of n, for these are the only facts that were used on µ beyond
positivity. But it is trivial that µ(n) meets these requirements because∣∣∣p(n)

m (t)
∣∣∣2

Πm
j=1|ξ

(n)
j |2

−→ 1, n→∞, n ∈ N1

uniformly on S as n goes to infinity, thereby proving Theorem 3.1. ��
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4. Rational approximants to Markov functions.

Let µ be a finite positive Borel measure with infinite compact support
S ⊂ (−1, 1), and consider the associated Markov function

(34) M(z) =
∫

1
z − t

dµ(t).

If we form the diagonal Padé approximants to M(z) at∞, it is well-known
that their denominators are the orthogonal polynomials with respect to µ

considered in Section 2. If however we form a best rational L2 approximant
of degree at most n to M(z) on the unit circle T, say pn−1/qn (by Parseval’s
theorem it must vanish at infinity) then its monic denominator qn has exact
degree n and all its roots lie in the open unit disk:

(35) qn(t) =
n∏
j=1

(t− αj), |αj | < 1 for j ∈ {1, . . . , n}.

Moreover, qn satisfies the orthogonality conditions:

(36)
∫

qn(t)
Q2
n(t)

tkdµ = 0, 0 � k < n,

where

Qn(t) =
n∏
j=1

(t− 1/αj)

is the polynomial whose zeros are reflected from those of qn across the unit
circle (if αj = 0, then the corresponding factor is missing from Qn). In
fact, that qn must be real is not immediate but true [1], and then (36)
follows from [7] (which deals with real approximants only). In particular
qn is the n-th orthogonal polynomial associated to the positive measure
Q−2
n (t)dµ(t).

However, a best approximant of degree n need not be unique, hence
(36) may have several solutions [4]. Moreover, equation (36) is met not
only by the denominator of a best approximant, but more generally by the
denominator of each critical point of the L2-error in degree n, including
local minima, saddles and so on. Sufficient condition for uniqueness can be
found in [7], [6], but the theorem we shall prove is valid for any sequence
of polynomials satisfying (35)-(36). Therefore we simply assume that we
are given such a sequence, which is consistently denoted by {qn}. From
Lemma 5.2 to come (put m = 1 and ϕ = 0 in that lemma) qn necessarily
has real roots so that, being the n-th orthogonal polynomial associated to

ANNALES DE L’INSTITUT FOURIER



ZERO DISTRIBUTIONS VIA ORTHOGONALITY 1475

the positive measure Q−2
n (t)dµ(t), it has n simple zeros lying in the convex

hull of S.

We are interested in the limit distribution of the zeros of qn, so we
let νn be their normalized counting measure.

About µ we assume exactly as in Section 2 that S is regular and that
(3) holds.

To formulate our result we need to introduce the Green equilibrium
measure of S with respect to the unit disk. Let

g(z, a) = log
∣∣∣∣1− az

z − a

∣∣∣∣
be the Green function of the unit disk with pole at a. To each probability
measure σ with support in S we associate the Green energy:∫ ∫

g(z, a)dσ(z)dσ(a).

Now, among all probability measures supported on S, there is one and
only one measure ΩS minimizing the Green energy, which is called the
Green equilibrium measure of S associated with the unit disk. It is the
only probability measure on S whose Green potential

GΩS (z) =
∫

g(z, a) dΩS(a)

is equal to a constant quasi-everywhere on S and less or equal to that
constant everywhere (see e.g. [16]).

Theorem 4.1. — Suppose that the support S of µ is regular with

respect to the Dirichlet problem in C\S, and that (3) holds. Then νn tends

to the Green equilibrium measure ΩS of S in the weak∗ topology as n tends

to ∞.

Proof. — We start the proof with the observation that the problem
is invariant under Möbius transformations z �→ (z−a)/(1−az), a ∈ (−1, 1).
It is known that the Green equilibrium measure is invariant under Möbius
transformation, and we claim that the statement is also invariant. In fact,
let w = (z − a)/(1 − az) be a new complex variable, reserving the special
notation τ = (t − a)/(1 − at) when t ∈ (−1, 1), and define a new measure
ν by setting:

dν(τ)
1 + aτ

= dµ(t).
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Observe that the support of ν, being the image of S under the conformal
map z �→ w, is again a regular compact subset of (−1, 1), and that (3) will
hold for ν (with a different c).

Note also that for any bounded measurable function h on (−1, 1) we
have: ∫

h

(
t− a

1− at

)
dµ(t) =

∫
h(τ)

dν(τ)
1 + aτ

.

If λj is the image of αj under the mapping z �→ w, then 1/λj is the image
of 1/αj . Therefore, the orthogonality relations∫

tk

 n∏
j=1

t− αj
(t− 1/αj)2

 dµ(t) = 0, k = 0, 1, . . . n− 1

take (modulo a multiplicative constant) the form:∫ (
τ + a

1 + aτ

)k
 n∏
j=1

(τ − λj)(1 + aτ)
(τ − 1/λj)2

 dν(τ)
1 + aτ

= 0, k = 0, 1, . . . n− 1.

Here (
τ + a

1 + aτ

)k

(1 + aτ)n−1, k = 0, 1, . . . , n− 1

generate all polynomials in τ of degree at most n− 1, hence the preceding
relations are the same as the orthogonality relations:

(37)
∫

τk

 n∏
j=1

τ − λj

(t− 1/λj)2

 dν(τ) = 0, k = 0, 1, . . . n− 1.

If, on the basis of (37), we are now able to prove the theorem for ν, it will
hold for µ as well by invariance of the Green equilibrium measure under
Möbius transforms, as announced.

Back to our problem, having seen that it is invariant under Möbius
transformations z �→ (z − a)/(1 − az) where a ∈ (−1, 1) can be chosen at
will, we pick it to the left of S and make this preliminary transformation
so as to be able to assume in what follows that S ⊂ (0, 1).

After these we prove the promised asymptotic behavior of the zeros,
closely following the proof in Section 2. Let ν be a weak∗ limit point of
{νn}, say νn → ν as n→∞, n ∈ N1. Since, we saw at the beginning of this
section, qn is the n-th orthogonal polynomial with respect to the positive
measure Q−2

n (t) dµ(t), each subinterval of R \ S contains at most one zero
of qn which is simple hence ν is a probability measure supported on S.
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Together with νn we also consider the normalized zero counting
measure of Qn, let it be σn. It is immediate that if νn → ν, then σn → σ,
where σ is the reflection of ν across the unit circle. In particular, σ is
supported outside the unit disk on the compact subset S−1 of R (remember
that S ⊂ (0, 1)), and its potential is continuous in the unit disk. Likewise,
taking into account that the zeros of Qn remain in the convex hull of
S−1, it is easy to see that the potentials Uσn (i.e. log |Qn|−1/n) are
uniformly equicontinuous and bounded on S. In particular, up to refining
the subsequence N1, we may assume that Uσn converges uniformly on S

and the limit is necessarily Uσ because for t ∈ S z �→ log(1/|z − t|) is
continuous in a neighbourhood of S−1.

We claim that it is enough to prove there is a constant D such that
the potential Uν−σ of ν − σ equals D quasi-everywhere on S. In fact, then
the lower semi-continuity of Uν−σ implies that Uν−σ(x) � D for all x ∈ S.
Thus, ν has finite logarithmic energy. Let σ̂ be the balayage of the measure
σ onto S. The regularity of S with respect to the Dirichlet problem implies
that U σ̂(x) = Uσ(x)+c1 for some constant c1 and all x ∈ S. In particular σ̂
has finite logarithmic energy, and the potential Uν−σ̂(x) is equal to D− c1

for quasi-every x ∈ S. Now, integrating the equality “Uν−σ̂(x) = D−c1 for
quasi-every x ∈ S” against ν − σ̂ we get from the fact that (ν − σ̂)(S) = 0
the equality:

0 =
∫

Uν−σ̂d(ν − σ̂) =
∫ ∫

log
1

|z − t|d(ν − σ̂)(t)d(ν − σ̂)(z),

and it is known for a signed measure with finite logarithmic energy and of
total mass zero that the logarithmic energy can be zero only if the measure
is zero (see [16], Lemma I.1.8). Thus, ν = σ̂. Let now σ̃ and ν̃ denote
the respective balayages of σ and ν onto the unit circle. Seeing that the
balayage of the Dirac delta δα at α onto the unit circle is the same as the
balayage of the Dirac delta δ1/α at the reflected point 1/α, it follows that
σ̃ = ν̃. However, forming the balayage of σ onto S can be done in two steps:
first form the balayage onto the unit circle, then form the balayage of the
so obtained measure σ̃ onto S. Thus, using as before a “hat” to denote the
balayage onto S and a “tilde” to denote the balayage on the unit circle, we
get that σ̂ = ̂̃σ, and so we can write

ν = σ̂ = ̂̃σ = ̂̃ν,
i.e. ν has the property that if we form its balayage onto the unit circle and
then form the balayage of that measure back onto S, we obtain ν again.
This, however, characterizes the Green equilibrium measure ΩS (see [16],
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Theorem VIII.2.6), hence ν = ΩS . Since this is true for all weak∗ limit
points of {νn}, the whole sequence converges to ΩS , as claimed.

Thus, it has left to prove there is a constant D such that the potential
of ν−σ equals D quasi-everywhere on S. We closely follow the reasoning in
the proof of Theorem 2.1, but there are some minor changes that we have
to indicate.

Suppose to the contrary that the claim is not true, and there are d,
τ > 0 and two non-polar sets E− ⊂ S and E+ ⊂ S such that

Uν−σ(x) � d− 2τ for x ∈ E− and Uν−σ(x) � d + τ for x ∈ E+

(note that Uν−σ is certainly finite quasi-everywhere on S since both Uν

and Uσ are). We claim that there is y0 ∈ supp(ν) such that Uν−σ(y0) > d.
In fact, in the opposite case Uν(x) � Uσ(x)+d for all x ∈ S, which implies
first of all that ν has finite logarithmic energy and then by the principle
of domination that the same inequality holds for all z ∈ C, which is a
contradition, for on E+ we have bigger values for Uν−σ.

According to the principle of descent (remember that the support of
νn remains in the convex hull of S and that Uσn converges uniformly to
Uσ on the disk), we have that

lim inf
n→∞, n∈N1

Uνn−σn(yn) � Uν−σ(y0) > d

for any sequence yn → y0. Therefore, there is ρ > 0 and N1 such that, for
y ∈ [y0 − 2ρ, y0 + 2ρ] and n � N1, n ∈ N1, the inequality Uνn−σn(y) � d

holds which is the same as

(38) |qn(y)/Qn(y)| � e−nd, y ∈ [y0 − 2ρ, y0 + 2ρ].

As before, this inequality remains true (for sufficiently large n) if we replace
qn by some monic polynomial q∗n with deg(q∗n) = n+o(n), provided that the
zeros of q∗n remain in a compact set of the unit disk and their asymptotic
distribution is still ν.

In another connection, the lower envelope theorem implies that, for
quasi-every x ∈ E−, we have

lim inf
n→∞, n∈N1

Uνn−σn(x) = Uν−σ(x) � d− 2τ,

hence for some subsequence N2 ⊂ N1 and sufficiently large n ∈ N2, we get:

(39) Mn := max
x∈S
|qn(x)/Qn(x)| � e−n(d−τ).

We let xn be a point where the maximum is attained.
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As in the proof of Theorem 2.1, we now need an estimate for qn away
from S in terms of Mn. To this effect, we set w(x) = 1/|Qn(x)|1/n, x ∈ S,
and we consider the weighted energy problem for w on S (see [16], Theorem
I.1.3). If we denote by σ̂n the balayage of σn onto S, we deduce from the
definition of balayage and the regularity of S that w(x) = exp(U σ̂n(x)−cn)
for every x ∈ S and some constant cn. Then it follows from [16], Theorem
I.3.3, that the equilibrium measure associated with this weighted energy
problem is precisely σ̂n. So, from the generalized Bernstein–Walsh lemma
[16], Theorem III.2.1, we obtain:

(40) |qn(z)| �Mn exp(−nU σ̂n(z) + ncn).

Note that for z = xn the exponential factor on the right is just |Qn(xn)|.
Since U σ̂n is continuous on S, it follows from the continuity theorem for
logarithmic potentials (Maria’s theorem) [16], Theorem II.3.5, that U σ̂n is
continuous on the whole plane, and actually the continuity on S is uniform
in n (this follows from the equicontinuity of the potentials Uσn on S, and
from the very proof of the continuity theorem). Hence, for every θ > 0,
there is ε > 0 such that for |z − xn| � 2ε we have

(41) |U σ̂n(z)− U σ̂n(xn)| � θ.

All these imply in view of (40) that, for |z − xn| � 2ε,

|qn(z)| � |Qn(xn)|Mne
nθ.

Then, by Cauchy’s formula,

|q′n(z)| � |Qn(xn)|Mne
nθ

ε

for |z − xn| � ε and, as in the proof of Theorem 2.1, we obtain that

(42) |qn(z)| � |Qn(xn)|Mn/2

for |z − xn| � ε/(2enθ).

From the elementary identity:

lim
n→∞

(
1 +

1
n

)n

= e,

it easily follows that for |z−xn| = o(1/n) we have |Qn(z)| � 2|Qn(xn)| for
sufficiently large n. On dividing (42) by the latter inequality, we see that

|qn(z)/Qn(z)| �Mn/4, |z − xn| � ε/(2enθ)

when n ∈ N2 is large enough.
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From here, (3), and (39), we deduce as in the proof of Theorem 2.1
that∫

[xn−ρ,xn+ρ]

|qn(t)|2
|Qn(t)|2 dµ(t) �

(
Mn

4

)2

c
( ε

2enθ
)L
� c

16

( ε

2enθ
)L

e−2n(d−τ)

� e−2nd+nτ(43)

for sufficiently large n ∈ N2, say for n � N2, provided θ > 0 is so small
that θL < τ .

Now, for n ∈ N2, n � max(N1, N2) let us choose two zeros αn,1 < αn,2
of qn in the interval [y0−ρ, y0 +ρ], and consider the polynomial Pn−2(t) =
qn(t)/((t−αn,1)(t−αn,2)) of degree at most n− 2 (we can find such zeros
because y0 is in the support of ν). As in the proof of Theorem 2.1 we get
on the one hand from (43) and the definition of Pn−2, together with the
disjointness of [xn − ρ, xn + ρ] and [y0 − ρ, y0 + ρ], that

(44)
∫
S\(αn,1,αn,2)

qn(t)
Q2
n(t)

Pn−2(t)dµ(t) � 1
(diam(S))2

e−2nd+nτ .

On the other hand, the limit distribution of the zeros of the polynomials
Pn−2, n ∈ N2, is again ν, and these zeros remain in the convex hull of S,
hence as we have already remarked after (38) we also have

|Pn−2(y)/Qn(y)| � e−nd, y ∈ [y0 − 2ρ, y0 + 2ρ]

for sufficiently large n. This and (38) together lead to the estimate:

(45)

∣∣∣∣∣
∫
S∩(αn,1,αn,2)

qn(t)
Q2
n(t)

Pn−2(t)dµ(t)

∣∣∣∣∣ � Ce−2nd

for some constant C. Now clearly, the sum of the two integrals on left
of (44) and (45) cannot be zero for large n since τ > 0. But this con-
tradicts the orthogonality relation (36), and this contradiction proves the
theorem. ��

5. Rational approximants to Cauchy transforms.

In this section, we let λ be a complex measure with infinite compact
support S ⊂ (−1, 1), and we consider its Cauchy transform

(46) M(z) =
∫

1
z − t

dλ(t).
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When λ is positive, then this is just the Markov function discussed in the
preceding section. If we form again a best-L2 rational approximant of degree
at most n to M(z) on the unit circle, say pn−1/qn, then the denominators

(47) qn(t) =
n∏
j=1

(t− αj)

have exact degree n, their zeros lie in the open unit disk, and they satisfy
the orthogonality relations [3]:

(48)
∫

qn(t)
Q2
n(t)

tk dλ(t) = 0, 0 � k < n,

where

(49) Qn(t) =
n∏
j=1

(t− 1/αj)

is the polynomial that has zeros at the reflected zeros of qn across the unit
circle (if αj = 0, then the corresponding factor is missing from Qn). We
emphasize that in the present case the zeros of qn need not be real and so,
besides λ that is in general complex-valued, the factor qn(t)/Q2

n(t) in the
orthogonality relation is also complex-valued.

Of course, even less than in the real case does (48) characterize qn
uniquely in general. There may be many solutions of degree n with zeros
inside the disk, induced by several best approximants, local minima, saddles
and so on. There may also be solutions of lower degree, but these have
no special interpretation with respect to approximation and we shall not
consider them. It is not known whether there may be solutions having zeros
outside the disk.

For our purposes, we shall simply assume that we are given a sequence
of solutions {qn} of exact degree n whose zeros lie in the unit disk. In
particular, {qn} can be a sequence of denominators of best-L2(T) rational
approximants to M .

Again, we are interested in the limit distribution of the zeros of qn,
so we let νn be their normalized counting measure.

About λ and its support S we assume the same conditions as in
Section 3, namely that S is a regular set with respect to the Dirichlet
problem in C \ S, and that λ can be written as

(50) dλ(t) = eiϕ(t)dµ(t)

where ϕ is of bounded variation on S and µ satisfies the density relation (3).
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Theorem 5.1. — With the preceding assumptions νn tends to the

Green equilibrium measure ΩS of S in the weak∗ topology as n tends to∞.

Proof. — By now it should be clear how the proof proceeds: in fact
Theorem 5.1 is related to Theorem 4.1 exactly as Theorem 3.1 is related
to Theorem 2.1. We follow the proof of Theorems 4.1 and 3.1.

First we apply a preliminary Möbius transformation z �→(z−a)/(1−az),
a ∈ (−1, 1) so as to ensure that S ⊂ (0, 1) (see the proof of Theorem 4.1).

Next, we consider any collection of m disjoint intervals [aj , bj ] such
that

(51) S ⊆ ∪mj=1[aj , bj ] ⊂ (0, 1) with a1 � b1 < a2 � b2 < . . . < am � bm.

Recalling the notation Angle(ξ, [a, b]) = |Arg(a − ξ) − Arg(b − ξ)| for the
angle in which an interval [a, b] is seen at ξ, we set as in Lemma 3.2

(52) θ(ξ) =
m∑
j=1

Angle(ξ, [aj , bj ]),

which is the the total angle in which ∪j [aj , bj ]) is seen at ξ.

We shall need an analog to that lemma:

Lemma 5.2. — Let qn(z) =
∏n
k=1(z − ξk) be a n-th orthogonal

polynomial in the sense of (48), where |ξk| < 1 for 1 � k � n. Under the

sole hypothesis that the support S of λ is an infinite compact subset of

(−1, 1), it holds with the previous notations that

(53)
n∑

k=1

(π − θ(ξk)) � V (ϕ, S) + (m− 1)π.

Corollary 5.3. — Under the assumptions of Theorem 5.1, for

every neighbourhood U of S there is a constant KU such that qn has at

most KU zeros outside U .

This corollary immediately follows from Lemma 5.2 exactly as we
deduced Corollary 3.3 from Lemma 3.2.

We will have to take care of the argument of 1/Q2
n(t), as well. This

will be done via the next lemma.

Lemma 5.4. — Let [a, b] ⊂ (0, 1) be an interval containing the

support S of λ. To every δ > 0 there exists an integer l such that, for each
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n large enough, there is a polynomial Tl,n of degree at most l satisfying:

(54)
∣∣∣∣ Qn(t)
|Qn(t)| − Tl,n(t)

∣∣∣∣ < δ, t ∈ [a, b].

In particular, the argument of Tl,n(t)/Qn(t) lies in the interval (−2δ, 2δ)
when n is large enough.

Taking these lemmas for granted, we complete the proof of Theo-
rem 5.1 and return to the lemmas afterwards.

As in the proof of Lemma 3.2, we extend ϕ to the convex hull [a, b]
of S without increasing its variation and then, using Lemma 3.4, we fix a
polynomial T of degree, say, k such that, for some 0 < δ < π/16 we have
Arg(eiϕ(t)T (t)) ∈ [−π/2+2δ, π/2−2δ] for t ∈ [a, b] provided that T (t) �= 0.

Let ν be a weak∗ limit point of {νn}, say νn → ν as n→∞, n ∈ N1.
By Corollary 5.3 this ν is supported on S. Together with νn we also consider
σn, the normalized zero counting measure of Qn, that converges weak∗ to
the reflexion σ of ν across the unit circle for n ∈ N1. By Lemma 5.4 there
is a fixed integer l and a polynomial Tl,n of degree at most l such that
(54) holds with δ/8 instead of δ for all t ∈ [a, b] and all n sufficiently large.
Since the sequence Tl,n is uniformly bounded on [a, b] of degree at most l,
we may assume up to refining N1 that Tn,l converges uniformly on [a, b] to
some polynomial Tl of degree at most l. Then, for n large enough, (54) will
hold with Tl in place of Tl,n and still δ/8 instead of δ. Consequently, for
t ∈ [a, b], we shall have that Arg(T 2

l (t)/Q2
n(t)) ∈ [−δ/2, δ/2] for all large

n ∈ N1 and also that, say, 1/2 < |Tl(t)| < 2.

Exactly as in the proof of Theorem 4.1 it is enough to verify that
there is a constant D such that the potential Uν−σ of ν − σ equals D

quasi-everywhere on S. We first assume that no zero of Qn goes to ∞, or

equivalently that no zero of qn goes to zero. Then, if there is no constant
D as above, we obtain as in the preceding section that (38) holds when
n ∈ N1 is sufficiently large, for some y0 lying in the support of ν and some
ρ > 0, and also (cf. (43)) that∫

[xn−ρ,xn+ρ]

|qn(t)|2
|Qn(t)|2 dµ(t) � e−2nd+nτ

for large n ∈ N2 ⊂ N1 with xn a maximum point in (39). This time we
actually rather need the estimate

(55)
∫

[xn−ρ,xn+ρ]

|qn(t)|2
|Qn(t)|2 |T (t)||T 2

l (t)|dµ(t) � e−2nd+nτ ,
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which can be obtained by the same method upon choosing θ so small (cf.
(41)) that θ(L+k) < τ and then appealing to the Boutroux-Cartan lemma
for T , as we did to obtain (28), while taking into account that |Tl(t)| > 1/2.

Next, we let 25 be the smallest even integer which is strictly greater
than k + 2l and, like in the proof of Theorem 3.1 (cf. (29)), we pick
0 < η � ρ/2 so small that, whenever z1, . . . z2� ∈ Nη([y0 − ρ/2, y0 + ρ/2]),
one has
(56)

∣∣Arg
(
Π2�
j=1(x− zj)

)∣∣ < δ/2 for x ∈ R \[y0 − ρ, y0 + ρ].

Select αn,1, αn,2, . . . , αn,2� to be 25 zeros of qn(t) lying in Nη([y0−ρ/2, y0 +
ρ/2]); there exist such zeros because y0 lies in the support of ν, and
the latter is included in (0, 1) and therefore is invariant under complex
conjugation. Consider the polynomial

(57) Pn−1(t) = qn(t)T (t)T 2
l (t)

/ 2�∏
j=1

(t− αn,j)

of degree at most n− 1. From (56) it follows that

(58)

∣∣∣∣∣∣Arg

1/
2�∏
j=1

(t− αn,j)

∣∣∣∣∣∣ < δ/2 for t ∈ R \ [y0 − ρ, y0 + ρ],

and since on [a, b]

Arg
(

qn(t)
Q2
n(t)

qn(t)T (t)T 2
l (t)eiϕ(t)

)
lies in the interval [−π/2 + 3δ/2, π/2 − 3δ/2] by our choice of T and Tl,
provided that T (t) �= 0, it follows from (58) that

Arg
(

qn(t)
Qn(t)2

Pn−1(t)eiϕ(t)

)
= Arg

(
qn(t)
Qn(t)2

qn(t)T (t)T 2
l (t)∏2�

j=1(t− αn,j)
eiϕ(t)

)
lies in [−π/2+ δ, π/2− δ] on S \ [y0− ρ, y0 + ρ], except when T (t) = 0. But
as η < ρ/2, no αn,j can lie in S \ [y0−ρ, y0 +ρ] by definition and therefore,
in view of (57), a zero of T on S \ [y0 − ρ, y0 + ρ] is necessarily a zero of
Pn−1. Thus the inequality

Re
(

qn(t)
Qn(t)2

Pn−1(t)eiϕ(t)

)
� sin δ

∣∣∣∣ qn(t)
Qn(t)2

Pn−1(t)eiϕ(t)

∣∣∣∣
holds for each t ∈ S \ [y0 − ρ, y0 + ρ], implying by (55), (57), and (11) that

Re

(∫
S\[y0−ρ,y0+ρ]

qn(t)
Qn(t)2

Pn−1(t)dλ(t)

)
(59)

� sin δ

(diam(S) + ρ)2�

∫
[xn−ρ,xn+ρ]

|qn(t)|2
|Qn(t)|2 |T (t)||T 2

l (t)|dµ(t)

� sin δ

(diam(S) + ρ)2�
e−2nd+nτ ,
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where we used in the first inequality that the distance from αn,j to y0 ∈ S

is at most ρ/2 + η � ρ and also that [y0 − ρ, y0 + ρ] ∩ [xn − ρ, xn + ρ] = ∅.
On the other hand, the limit distribution of the zeros of the poly-

nomials Pn−1 for n ∈ N2 is again ν, and since their leading coefficient is
independent of n (equal to the leading coefficient of TT 2

l ), we get exactly
as in (38) that

|Pn−1(y)/Qn(y)| � C1e
−nd, y ∈ [y0 − 2ρ, y0 + 2ρ],

for some constant C1 and sufficiently large n ∈ N2. Here, we should stress
that the principle of descent that led to (38) is valid because the zeros of
Pn−1 remain bounded, being either zeros of T , Tl which are fixed or zeros
of qn(z) which lie in the unit disk.

From this and (38) we obtain for some constant C2 the estimate:

(60)

∣∣∣∣∣
∫

[y0−ρ,y0+ρ]

qn(t)
Q2
n(t)

Pn−1(t)dλ(t)

∣∣∣∣∣ � C2 e
−2nd,

and again the contradiction comes from the fact that the sum of the two
integrals on the left of (60) and (59) cannot be zero for large n as τ > 0.

We need finally to handle the case where some zeros of Qn go to
infinity as n → ∞, n ∈ N1. The number of such zeros is necessarily
bounded, uniformly with n, because only a bounded number of zeros of
qn can tend to 0 by Corollary 5.3 and the fact that S ⊂ (0, 1). Refining
N1 if necessary, we may assume that exactly, say, m zeros of qn go to zero,
where m is some fixed integer. Call these zeros αn,1, . . . , αn,m for n ∈ N1

and let us define

Q∗n(t) =
Qn(t)

Πm
j=1(t− 1/αn,j)

,

dµn(t) =
∣∣Πm

j=1(1− αn,jt)
∣∣−2

dµ(t),

ϕn(t) = ϕ(t)− 2
m∑
j=1

Arg(1− αn,jt),

noting that all the quantities above are well defined for n large enough.
Then, upon renormalizing (48), we can rewrite the orthogonality rela-
tions as:

(61)
∫

qn(t)
(Q∗n)2 (t)

tk eiϕn(t) dµn(t) = 0, 0 � k < n.

TOME 55 (2005), FASCICULE 5



1486 Laurent BARATCHART, Reinhold KÜSTNER & Vilmos TOTIK

Because Q∗n has asymptotic zero-distribution σ and its roots are now
bounded, we seek to apply the first part of the proof to µn and ϕn instead of
µ and ϕ even though these depend on n. As for µn this is possible because∣∣Πm

j=1(1− αn,jt)
∣∣2 −→ 1

uniformly on S as n→∞, hence the constant c in (3) can be made uniform
with respect to n, and the total mass remains bounded independently of n
(compare the end of the proof of Theorem 3.1). As for ϕn, we notice that
ϕn − ϕ converges uniformly to zero on the convex hull of S together with
all its derivatives (compare (71) in the proof of Lemma 5.2 below), thus
V (ϕ− ϕ1, S) goes to zero as well. Therefore Corollary 5.3 and Lemma 3.4
remain true with the same T when ϕ gets replaced by ϕn and n is large
enough. Because these were the only facts we used on ϕ, this demonstrates
Theorem 5.1. ��

In the previous proof we used Lemmas 5.2 and 5.4, and we need now
to establish them.

Proof of Lemma 5.2. — We follow the proof of Lemma 3.2. Exactly
as in that lemma, we may assume that V (ϕ, S) <∞ and that ϕ is defined
on the whole real line with jumps of size at most π. Next, an induction
argument similar to (15) reduces the proof to the case where qn has no
zero on ∪j [aj , bj ] (in that argument, set dµ1(t) = t2dµ(t) if ξk = 0 and
dµ1(t) = (t − ξk)2(t − 1/ξk)−2dµ(t) otherwise). Then, the reasoning that
led us to (16) yields:

(62) V (ϕ, S) +
n∑

k=1

m∑
j=1

V

(
arg

(
t− ξk

(t− 1/ξk)2

)
, [aj , bj ]

)
� (n−m + 1)π,

where arg
(
(t− ξk)/(t− 1/ξk)2

)
is any argument function for (t− ξk)/(t−

1/ξk)2 on (−1, 1) and it is understood that the factor (t − 1/ξk)−2 is not
present if ξk = 0. Indeed, if (62) did not hold, the construction of Lemma 3.2
would provide us with a polynomial Pn−1 of degree at most n−1 such that,
for some u0 ∈ R, the function

(63) t �→ Im
(
e−iu0

qn(t)
Q2
n(t)

eiϕ(t)Pn−1(t)
)

has constant sign on S except at finitely many points where it vanishes.
But this contradicts the fact that, by (48) and (50), we have:∫

e−iu0
qn(t)
Q2
n(t)

eiϕ(t)Pn−1(t)dµ(t) = 0,

whereas the measure µ is positive with infinite support.
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We shall invoke (62) with a choice of the argument given by

(64) arg
(

t− ξ

(t− 1/ξ)2

)
= Arg (t− ξ)− 2 Arg

(
t− 1/ξ

)
,

where Arg is the normalized argument function used in (12). This will imply
what we want once we have shown that if [a, b] ⊂ (−1, 1) is any interval
and if we let for simplicity

(65) gζ(t) = Arg (t− ζ)− 2 Arg
(
t− 1/ζ

)
, ζ ∈ C \ [a, b],

where the summand −2 Arg(t− 1/ζ) is omitted if ζ = 0, then

(66) V (gξ, [a, b]) � Angle(ξ, [a, b]) for |ξ| < 1, ξ /∈ [a, b].

Indeed, plugging (66) into (62) for each [a, b] = [aj , bj ] we get the statement
in Lemma 5.2.

Note that the desired inequality certainly holds with equality when
ξ ∈ (−1, 1) \ [a, b], because then (64) is independent of t ∈ [a, b] (it is either
0, −π, or π depending whether ξ < a or ξ > b and also whether ξ = 0 or
not) hence both sides of (66) are equal to 0 in that case. Thus we assume
that ξ is imaginary, and we suppose first that it lies in the upper half ∆+ of
the open unit disk with (−1, 1) deleted. Because gζ(t) is a smooth function
of (ζ, t) on C\R× [a, b], the map ξ �→ V (gξ, [a, b]) is continuous for ξ /∈ R (it
is the integral over [a, b] of |dgξ/dt|). Moreover, by definition, V (gξ, [a, b])
is the supremum of all sums of the form

Σ(ξ) =
M−1∑
k=1

εk (gξ(tk+1)− gξ(tk))

where t1 < t2 < · · · < tM is any finite sequence in [a, b] and εk = ±1
any sequence of signs. Since gξ is clearly a harmonic function of ξ in ∆+

by (65), so is every Σ(ξ) and thus V (gξ, [a, b]), being the supremum of
a family of harmonic functions and being continuous, is subharmonic. In
another connection Arg(t−ξ) increases with t since Imξ > 0, and therefore,
by (12),

(67) Angle(ξ, [a, b]) = Arg(b− ξ)−Arg(a− ξ)

is a positive harmonic function of ξ on ∆+. Thus, by the extended maximum
principle for subharmonic functions [15], Theorem 3.6.9, it is sufficient for
(66) to hold when ξ ∈ ∆+ that V (gξ, [a, b]) be bounded from above and
that, for quasi-every z on the boundary ∂∆+ of ∆+, we have

(68) lim sup
ξ→z

V (gξ, [a, b]) � lim
ξ→z

Angle(ξ, [a, b]).
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To show that ξ �→ V (gξ, [a, b]) is bounded on ∆+, we observe first from
(67) and the monotonicity of t �→ Arg(t− ξ) that

(69) V (Arg(t− ξ), [a, b]) = Arg(b− ξ)−Arg(a− ξ) = Angle(ξ, [a, b]) � π.

Next, we put ξ = ρeiθ with 0 < ρ < 1 and 0 < θ < π, and we notice from
elementary geometry that

(70) tan
(
Arg(t− 1/ξ) + π/2

)
=

ρt− cos θ
sin θ

hence

(71)
d

dt
Arg(t− 1/ξ) =

ρ sin θ

sin2 θ + (ρt− cos θ)2
, t ∈ [a, b].

Setting δ > 0 for the distance from [a, b] to the unit circle, the majorization

(72) sin2 θ + (ρt− cos θ)2 = 1 + ρ2t2 − 2ρt cos θ > δ2

shows together with (71) that

(73) V (Arg(t− 1/ξ), [a, b]) < (b− a)/δ2.

Then, the desired boundedness follows from (65), (69), (73), and the
triangle inequality.

We are now going to show that (68) in fact holds for each z ∈
∂∆+\{a, b, 0}. Indeed, ξ �→ Angle(ξ, [a, b]) is continuous on C\{a, b} hence
the right-hand side of (68) is just Angle(z, [a, b]) for z �= a, b. Besides, we
see from (72) that (71) tends to 0 when ρ → ρ0 ∈ [0, 1] and θ → 0 or π,
uniformly with respect to t ∈ [a, b]. Therefore

lim
ξ→z

V (Arg(t− 1/ξ), [a, b]) = 0, z ∈ [−1, 1],

implying by (65), (69), the triangle inequality, and the continuity of
Angle(ξ, [a, b]) just mentioned that for z ∈ [−1, 1] with z �= a, b, 0:

lim sup
ξ→z

V (gξ, [a, b]) � lim
ξ→z

V (Arg(t− ξ), [a, b]) = Angle(z, [a, b]).

It remains to consider the case where z ∈ ∂∆+ is imaginary of modulus 1.
Then 1/z = z so that gz(t) = −Arg(t− z) is monotonic. Therefore, by the
continuity of V (gξ, [a, b]) on C \ R already pointed out, we get

lim
ξ→z

V (gξ, [a, b])=V (gz, [a, b]) = |Arg(b− z)−Arg(a− z)|=Angle(z, [a, b]).

Thus we have proven that (68) holds at each boundary point of ∆+ except
perhaps a, b, and 0. The reasoning when ξ lies in the lower half of the unit
disk is entirely similar, the only difference being that Arg(t− ξ) decreases
with t (so there is a change of sign in (67)) and also that Arg(t−1/ξ)+π/2
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gets replaced by Arg(t− 1/ξ)− π/2 in (70) where, this time, −π < θ < 0.
Altogether, we find that (66) holds, as was to be shown. ��

Proof of Lemma 5.4. — The geometry is here simplified by our
assumption that the support S ⊆ [a, b] lies within (0, 1).

It is sufficient to prove that the functions Qn(t)/|Qn(t)| have uni-
formly bounded derivatives on [a, b]. Indeed, each of them in this case can
be extended to a function Φn(t), defined on [0, 1], whose derivative Φ′n is
uniformly bounded independently of n, say |Φ′n| � L for t ∈ [0, 1]. Then,
by Jackson’s theorem [8], Theorem 6.2, there is a constant C and there are
polynomials Tl,n of degree at most l such that

|Φn(t)− Tn,l(t)| �
CL

l
, t ∈ [0, 1],

and the right hand side will be smaller than δ if l > CL/δ.

In turn, it is clearly enough to verify that arg(Qn(t)) has uniformly
bounded derivative on [a, b], where arg(Qn(t)) is any argument function
for Qn(t) (note that Qn can have no zero on [a, b]). Notations being as in
(47)-(49), we choose to set

arg(Qn(t)) =
n∑
j=1

Arg(t− 1/αj)

where, as usual, the j-th summand is omitted if αj = 0. For 1/αj = x+ iy

a zero of Qn, let θj = Arg(1/αj) which is the same as Arg(αj) and put
for simplicity ϕj = Angle(αj , [a, b]), the angle in which [a, b] is seen at αj .
Consider first the case where θj ∈ [0, π/4] and |αj | � a/2. It is elementary
that θj is at most π − ϕj , and so if π − ϕj � π/4 we get:

y � (2/a) tan θj � (2/a) tan(π − ϕj) � 2(2/a)(π − ϕj),

where we used that tan γ � 2γ for γ ∈ [0, π/4]. If however π − ϕj � π/4,
then

(74) y � (2/a) � 2(2/a)(π − ϕj),

so this inequality holds regardless how large π − ϕj is. From (71) we see
that, for t ∈ [a, b],

(75)
d(Arg(t− 1/αj))

dt
=

y

(x− t)2
,

and on using (74) we conclude that∣∣∣∣d(Arg(t− 1/αj))
dt

∣∣∣∣ � 4
a(1− b)2

(π − ϕj).
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A similar estimate holds if θj ∈ [−π/4, 0], |αj | � a/2. However, by
Corollary 5.3, the number of those αj for which either |αj | � a/2, or
Arg(αj) �∈ [−π/4, π/4] is less than a fixed constant K1, and since by (75)
d(Arg(t− 1/αj))/dt is clearly bounded on [a, b] for each such zero with an
absolute bound (remember [a, b] ⊂ (0, 1)), the contribution to the derivative
of arg(Qn(t)) of all these exceptional zeros is less than a fixed constant K2.

So far we have proved that∣∣∣∣d(arg(Qn(t)))
dt

∣∣∣∣ � n∑
j=1

∣∣∣∣d(Arg(t− 1/αj))
dt

∣∣∣∣ � 4
a(1− b)2

n∑
j=1

(π − ϕj) + K2.

Now the lemma follows from here and Lemma 5.2. ��

6. Remarks and further results.

In this section we point out to some works that motivated the
preceding results, as well as we make further remarks in connection with
the method used in this paper and its extensions.

1. Generally speaking, the results of the paper would hold under the
hypothesis that dλ/d|λ| has bounded variation while µ = |λ| satisfies, on
its support S, the so-called Λ condition introduced in [20]:
(76)

cap

({
t ∈ S : lim sup

r→0+

Log
(
1/µ

(
[t− r, t + r]

))
Log

(
1/r

) < +∞
})

= cap(S),

or its hyperbolic analog (replacing the logarithmic capacity by the Green
capacity when we deal with Green equilibrium distributions). Above in all
sections, we made the stronger assumption that S is regular and that µ is
sufficiently thick in the sense of (3). This makes for a clearer exposition that
displays already all the interesting features of the method. For the more
general version, we refer the reader to [12] where the potential-theoretic
arguments are kept a bit more elementary, in that only the principle of
descent and the general properties of equilibrium measures are used.

2. In recent past, non-Hermitian orthogonality (see Section 3) has
received a lot of interest in connection with rational approximation, for
the minimal degree solution of (10) is the monic denominator of the n-th
diagonal Padé approximant to the Cauchy transform of λ. In this context,
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the possibility that dn < n accounts for cases of non-normality which are
well-known to occur with such approximants. Also, the main objective of
this paper, namely of proving asymptotic zero distribution, is tantamount
to showing the convergence in capacity of these approximants [17]. As to
non-Hermitian orthogonality proper, we refer the reader to [18] for a survey
on the segment while [19] already deals with a more general situation where
orthogonality holds over an arbitrary symmetric contour for the logarithmic
potential; in this setting, [9] treats the case of a varying weight in relation
to multipoint Padé approximants. Let us point out that the method in
Section 3, although restricted to the segment so far, applies to measures
with considerably more general support at the cost of assuming a little more
on their argument, namely that it has bounded variation. It is moreover
interesting in that it provides non-asymptotic information on the zeros of
the orthogonal polynomials, cf. Lemma 3.2.

From the point of view of Approximation Theory, a natural sequel
to the results in Section 5 would be to establish the convergence in
capacity of best rational and meromorphic approximants on the circle
to Cauchy transforms of complex measures on a segment. However, the
primary purpose of this paper is to present a specific technique to handle
orthogonality equations, and including such applications would make the
paper unbalanced. These we left here for further study.

3. From the strong convergence of Padé approximants established
in [13], it follows that all the zeros of the minimal degree solution to
(10) cluster on S when the latter is a real segment and λ is absolutely
continuous with respect to Lebesgue measure with continuous and nowhere
vanishing (complex) density. This result is not contained in, nor contains
our Lemma 3.2, and it would be interesting to understand better the
relations between them.

4. In relation to the Möbius transformation µ → ν in Section 4 (see
the proof of Theorem 4.1) it is worth stressing that if M∗ denotes the
Markov function (34) associated to ν, then

M(z) =
1 + aw

1− a2
M∗(w),

and since |dz| = |1− a2| |1 + aw|−2 |dw|, the identity∫
T

|M(z)|2|dz| = (1− a2)−1

∫
T

|M∗(w)|2|dw|
holds. Likewise, if rn is a rational function with numerator degree � n− 1
and denominator degree n and with its poles in the unit disk and if we
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define a new rational function r∗n by setting

rn(z) =
1 + aw

1− a2
r∗n(w),

we deduce in the same way upon regarding rn and r∗n as Cauchy transforms
of discrete measures that∫

T

|rn(z)|2|dz| = (1− a2)−1

∫
T

|r∗n(w)|2|dw|.

Now, if we fix the denominator χn of rn and if we adjust the numerator
in such a way that M − rn has minimal L2(T)-norm, we get by the
characteristic property of orthogonal projections that∫

T

|M(z)− rn(z)|2|dz| =
∫
T

|M(z)|2|dz| −
∫
T

|rn(z)|2|dz|,

which is easily seen [7] to be equivalent to the vanishing of M − rn at the
reflected zeros of χn across the unit circle. But then M∗ − r∗n vanishes at
the reflected zeros of the denominator of r∗n, so that∫

T

|M(z)− rn(z)|2|dz| = (1− a2)−1

∫
T

|M∗(w)− r∗n(w)|2|dw|

and we see that best approximants also transform in a natural way.

5. Lemma 3.2 and Theorem 3.1 remain valid, under the same as-
sumptions, when λ is supported on an arbitrary line segment L (not
necessarily real). In fact, such a segment is the image of a real segment
[α, β] under some affine map A(z) = az + b with a �= 0, and if we let
pn(z) = a−dnqn(A(z)) we deduce from (10) that∫

pn(z) zk dλ1(z) = 0, k = 0, . . . , n− 1,

where λ1(E) = λ(A(E)) for each Borel set E. Since λ1 is supported on
[α, β] where it satisfies the hypotheses of either the lemma or the theorem
if λ did on L, the conclusion follows from the invariance of equilibrium
measures and polynomials of a given degree under affine maps.

6. It is a little less transparent but true that Theorem 5.1 remains
valid if λ is supported on a hyperbolic geodesic segment of the disk; these
are simply the closed subarcs contained in the open unit disk of those
circles orthogonal to the unit circle (a diameter is a circular arc centered
at infinity). In fact, a hyperbolic geodesic segment H is simply the image
of a real segment [α, β] under some conformal automorphism of the unit
disk, i.e. under some Möbius transform of the type:

(77) Ma,θ0(z) = eiθ0
z − a

1− āz
, |a| < 1.
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Now, if we start from (48) where λ is supported on H which is the image
of [α, β] under (77), and if we let:

pn(z) = (1− āz)n
qn(Ma,θ0(z))
ānqn(−eiθ0/ā) , Pn(z) = znpn(1/z̄),

we get two polynomials, the first of which is monic of degree n with roots
in the unit disk (they are the preimages of the roots of qn under Ma,θ0)
and the second of which has roots reflected from those of the first across
the unit circle. Then, the computation made at the begining of the proof
of Theorem 4.1 shows that pn and Pn satisfy the orthogonality relations:

(78)
∫

pn(z)
P 2
n(z)

zk dλ2(z) = 0, 0 � k < n,

where dλ2(z) = (1 − āz) dλ1(z) with λ1(E) = λ(Ma,θ0(E)) for each Borel
set E. Since λ2 is supported on [α, β] where it satisfies the hypotheses of
Theorem 5.1 if λ did on H, the conclusion follows from the invariance of
Green equilibrium measures under conformal automorphisms of the disk.
Note that, by (78) and Lemma 5.2, all the zeros of qn must lie on H
whenever (1− āξ) dλ(ξ) is real of constant sign.

7. In connection with 6, it is worth pointing out a hyperbolic version
of Lemma 5.2. To state it, let HAngle(ξ,H) ∈ [0, π] denote the hyperbolic

angle under which the geodesic segment H is seen at ξ, that is to say the
angle at ξ between the two geodesics through ξ and the endpoints of H.
To parallel (51), we assume that the support S of λ is covered by finitely
many disjoint geodesic segments Hj contained in H:

(79) S ⊆ ∪mj=1Hj ⊂ H.
A hyperbolic analog to (52) is now given by

(80) θH(ξ) =
m∑
j=1

HAngle(ξ,Hj),

which is the total hyperbolic angle in which ∪jHj is seen at ξ. We may
also define the total variation V (ϕ, S) of the function ϕ on S in a manner
similar to (13), since the parametrization Ma,θ0 : [α, β] → H induces an
ordering on H and any other continuous parametrization induces the same
ordering or its opposite. Finally, we set Θ(H) ∈ [0, π) to mean the aperture

of the arc of circle H, that is the ratio of its length and its radius.

Lemma 6.1. — Let qn(z) =
∏n
k=1(z − ξk) be a n-th orthogonal

polynomial in the sense of (48) with all its roots in the open unit disk, and
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let (50) be the polar decomposition of λ. If the support S of λ is infinite

and satisfies(79), then

(81)
n∑

k=1

(π − θH(ξk)) � 2V (ϕ, S) + (m− 1)π + Θ(H).

When S ⊂ R so that H is a real segment, we get Θ(H) = 0 but still
the right-hand side of (81) is less favorable than the right-hand side of (53)
by a factor 2 in front of V (f). Nevertheless, Lemma 6.1 is in other respects
sharper than Lemma 5.2, even in this case, because if [α, β] ⊂ (0, 1) and
|ξ| < 1 then HAngle(ξ, [α, β]) � Angle(ξ, [α, β]) with equality only when
ξ ∈ (−1, 1), and HAngle(ξ, [α, β]) tends to zero when |ξ| tends to 1 whereas
Angle(ξ, [α, β]) does not if α �= β.

Proof of Lemma 6.1. — Parametrizing H by (77), we see from (78)
and the invariance of hyperbolic angles under automorphisms of the disk
that it is enough to prove the Lemma when H is a real segment, for the
variation of the argument of λ1 and λ is the same and the variation of
Arg(1 − āz) on S is less than its variation on H which is Θ(H)/2 (to see
this last point, observe that the oriented tangent to H at z has direction
1/(1−āz)2 whose argument is monotonic as z traversesH, thus 2 Arg(1−āz)
has total variation equal to the modulus of the difference between its
extreme values which is indeed the aperture of H). Thus we assume that
Hj = [aj , bj ], a real segment, and accordingly that Θ(H) = 0.

Let us show for 1 � j � m and 1 � k � n that

(82) V

(
Arg

(
t− ξk

t− 1/ξk

)
, [aj , bj ]

)
= HAngle(ξk, [aj , bj ]),

with the usual convention that t − 1/ξk is to be replaced by 1 if ξk = 0.
This certainly holds when ξk ∈ (−1, 1), because then HAngle(ξk, [aj , bj ]) =
Angle(ξk, [aj , bj ]) and both sides of (82) are equal to π or to 0 according
whether ξk lies in [aj , bj ] or not. Therefore we may assume that ξk /∈ R
in which case (t − ξk)/(t − 1/ξk) is never negative real so that Arg((t −
ξk)/(t− 1/ξk)) is a smooth function of t.

Then, the set

Ct =
{
z ∈ C : |z| < 1 and Arg

(
z − ξk

z − 1/ξk

)
= Arg

(
t− ξk

t− 1/ξk

)}
is an arc of circle orthogonal to the unit circle (the preimage of a diameter
under Mξk,0) passing through t and ξk, so it supports the geodesic segment
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linking these points. If we orient Ct from t to ξk, a little geometry shows that
Arg(t−ξk)/(t−1/ξk) is equal to the angle between the chord [ξk, 1/ξk] and
the tangent to Ct at ξk. But since 1/ξk is a real multiple of ξk this chord
lies on a radius, so that Arg((t − ξk)/(t − 1/ξk)) is in fact the oriented
hyperbolic angle OHAngle(ξk, [0, t]) ∈ (−π, π) in which the segment [0, t],
oriented1 from 0 to t, is seen at ξk. Because

OHAngle(ξk, [0, t]) = OHAngle(ξk, [0, aj ]) + OHAngle(ξk, [aj , t]),

it follows upon differentiating that

(83)
d

dt
Arg

(
t− ξk

t− 1/ξk

)
=

d

dt
OHAngle(ξk, [aj , t]).

Taking absolute values in (83) and integrating over [aj , bj ], we obtain (82)
from the monotonicity of OHAngle(ξk, [aj , t]) with respect to t.

Next, we claim that for any interval [a, b] ⊂ (0, 1) one has

(84) Angle(1/ξ̄, [a, b]) + Angle(ξ, [a, b]) � π, |ξ| � 1,

where the first term is interpreted as being 0 if ξ = 0. Indeed, (84) is
obvious when ξ ∈ [−1, 1] since the first term is zero while the second is
either π or 0 according whether ξ belongs to [a, b] or not. The inequality
also holds when |ξ| = 1, ξ /∈ R, because then 1/ξ̄ = ξ while

Angle(ξ, [a, b]) � Angle(ξ, [−1, 1]) = π/2.

As the left-hand side of (84) is a bounded harmonic function of ξ for |ξ| < 1,
ξ /∈ R, and since this function extends continuously to the closed unit
circle and to (−1, 1)\{a, b}, the claim follows from the extended maximum
principle.

We are now in position to conclude the proof. We start from (62)
where we set this time

(85) arg
(

t− ξ

(t− 1/ξ)2

)
= Arg

(
t− ξ

t− 1/ξ

)
−Arg

(
t− 1/ξ

)
,

and we majorize termwise the double sum there using the elementary
inequality:

V

(
arg

(
t− ξk

(t− 1/ξk)2

)
, [aj , bj ]

)
� V

(
Arg

(
t− ξk

t− 1/ξk

)
, [aj , bj ]

)
+V

(
Arg

(
1

t− 1/ξk

)
, [aj , bj ]

)
.

1 To emphasize this orientation we write [0, t] even if t < 0.
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The first term in the right-hand side was identified in (82) and the second
is easily computed to be

V
(
Arg

(
t− 1/ξk

)
, [aj , bj ]

)
= Angle(1/ξk, [aj , bj ])

by the monotonicity of Arg(t−1/ξk) with respect to t. Thereby (62) yields:

(86) V (ϕ, S) +
n∑

k=1

(
θH(ξk) + θ(1/ξk)

)
� (n−m + 1)π,

and since obviously θ(1/ξk) � Angle(1/ξk, [a1, bm]), it follows a fortiori that

(87) V (ϕ, S) +
n∑

k=1

(
θH(ξk) + Angle(1/ξk, [a1, bm])

)
� (n−m + 1)π.

Applying (84) with [a, b] = [a1, bm], we get

(88) V (ϕ, S) +
n∑

k=1

θH(ξk) +
n∑

k=1

(π −Angle(ξk, [a1, bm])) � (n−m + 1)π,

thus, in view (53) applied with m = 1 to the interval [a1, bm], we conclude
that

2V (ϕ, S) +
n∑

k=1

θH(ξk) � (n−m + 1)π

which is (81) with Θ(H) = 0, as desired. ��

8. As a corollary to the proof of Theorem 5.1, we get at little extra-
cost a slightly extended version of this result featuring an additional weight
varying with n:

Corollary 6.2. — The conclusion of Theorem 5.1 remains true if

dλ gets replaced by wndλ, where wn is a sequence of complex measurable

functions on the convex hull of S whose moduli are uniformly bounded

from above and below, and whose arguments are smooth with uniformly

bounded derivatives.

The corollary has special significance with respect to meromorphic
approximation, as we now explain. If for 2 < p � ∞ we let h/qn be a
best approximant to M(z) in (46) out of Hp/Qn, where Hp is the Hardy
space of the disk and Qn the space of polynomials of degree at most n,
the (monic) denominator qn in the irreducible form of the approximant has
degree dn � n (in fact dn = n except perhaps when p = ∞), it has all its
zeros in the unit disk, and it satisfies the orthogonality relations:

(90)
∫

qn(t)
Q2
n(t)

tk wn(t) dλ(t) = 0, 0 � k � dn − 1,
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where wn is analytic without zeros in the disk; in fact, wn is the outer
factor of a n-th singular vector of the (generalized) Hankel operator with
symbol M(z) [3]. In that work it is shown, provided λ is analytic, that
wn is a normal family of functions which does not have the null function
as an accumulation point. Hence the hypotheses of Corollary 6.2 are met
and (90) implies that the asymptotic distribution of the zeros of qn is ΩS .
Minor modifications in the arguments of [3] prove that wn is still normal if
λ is not analytic but merely satisfies the hypotheses of Theorem 5.1, hence
Corollary 6.2 actually settles the asymptotic behaviour of the poles of the
best-Lp meromorphic approximants to M(z) when 2 < p �∞. It is worth
noting that when p = 2, the best meromorphic approximants to M(z) are
nothing but the best-L2 rational approximants considered in Sections 4-
5. By point 6 above, all these results are valid if the support of λ is a
hyperbolic geodesic arc in the disk instead of a real segment. The situation
when p < 2 is still not well understood.

Proof of Corollary 6.2. — Follow the reasoning in the proof of
Theorem 5.1. We can extend the definition of wn to [−1, 1] without
increasing the variation nor the bound on the derivative of the argument.
Upon setting dµn = |wn|dµ and ϕn = ϕ + arg(wn), we find ourselves in
a situation like at the end of the proof of Theorem 5.1 when we had to
extend the previous argument to varying ϕ and µ. Here again, dealing with
µn is no problem because with our assumptions the constant c in (3) can be
made uniform with respect to n, and the total mass is uniformly bounded.
To handle ϕn, we notice first that it has uniformly bounded variation by
the boundedness of d arg(wn(t))/dt, hence Corollary 5.3 continues to hold.
Second, using Jackson’s theorem as in the proof of Lemma 5.4 instead of
the Weierstrass theorem, we find that Lemma 3.4 will hold with ϕn instead
of ϕ and Tn instead of T , where the degree of Tn is uniformly bounded.
From the way T was constructed in that lemma, |Tn| will also be uniformly
bounded (note that the factors needed to handle the discontinuities of ϕ
will not depend on n). We can thus assume, up to extracting a subsequence,
that Tn converges and thus can be made independent of n when the latter
is large enough (see the end of the proof of Theorem 5.1). This is all we
need to carry out the proof as in Theorem 5.1. ��

A close look at the preceding proof would show (cf. [12]) that the
assumptions on |wn| made in Corollary 6.2 can be weakened: in fact it is
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sufficient that infx∈S |wn(x)| > 0 for each n, and that

lim
n→∞

( ∫
S

|wn(t)|dµ(t)/ inf
x∈S
|wn(x)|

)1/n

= 1.

The extend to which the assumptions on the argument of wn can be relaxed
is less clear. The authors suspect it might be sufficient that its variation be
o (n), but they could not prove it so far. Actually, they would have a proof
if only they could answer in the positive the following question which is of
independent interest:

Given [a, b] ⊂ R and α ∈
(
π/4 , π/2

)
, does there exist a constant Cα

such that, to every real function φ of bounded variation on [a, b], there is

a polynomial P �= 0 satisfying{
deg(P ) � Cα V (φ, [a, b]),

|Arg(eiφ(x)P (x))| � α, for x ∈ [a, b], P (x) �= 0 ?

For α = π/2 this holds with Cπ/2 = 1/π, as a consequence of Kestelman’s
theorem (see [11] or [10], page 129) that we used in the proof of Lemma 3.2.
The whole point here is that we need this property for α < π/2. Note that
an affirmative answer to this question would yield an improved version of
Lemma 3.4, with a bound for the degree of the polynomial.
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