[Prolongements holomorphes dans les variétés de Stein]
Soit une variété analytique complexe telle que toute application holomorphe d’une partie convexe compacte de l’espace euclidien à valeurs dans est limite uniforme d’applications entières à valeurs dans . On prouve que toute application holomorphe d’un sous ensemble analytique complexe fermé d’une variété de Stein à valeurs dans possède un prolongement holomorphe à à condition qu’elle admette un prolongement continu. On établit ensuite l’équivalence entre quatre propriétés de type Oka pour une variété analytique complexe.
Suppose that is a complex manifold such that any holomorphic map from a compact convex set in a Euclidean space to is a uniform limit of entire maps . We prove that a holomorphic map from a closed complex subvariety in a Stein manifold admits a holomorphic extension provided that it admits a continuous extension. We then establish the equivalence of four Oka-type properties of a complex manifold.
Keywords: Stein manifold, holomorphic mappings, Oka property
Mot clés : variétés de Stein, applications holomorphes, propriété d'Oka
Forstneric, Franc 1
@article{AIF_2005__55_3_733_0, author = {Forstneric, Franc}, title = {Extending holomorphic mappings from subvarieties in {Stein} manifolds}, journal = {Annales de l'Institut Fourier}, pages = {733--751}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {55}, number = {3}, year = {2005}, doi = {10.5802/aif.2112}, zbl = {1076.32003}, mrnumber = {2149401}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2112/} }
TY - JOUR AU - Forstneric, Franc TI - Extending holomorphic mappings from subvarieties in Stein manifolds JO - Annales de l'Institut Fourier PY - 2005 SP - 733 EP - 751 VL - 55 IS - 3 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2112/ DO - 10.5802/aif.2112 LA - en ID - AIF_2005__55_3_733_0 ER -
%0 Journal Article %A Forstneric, Franc %T Extending holomorphic mappings from subvarieties in Stein manifolds %J Annales de l'Institut Fourier %D 2005 %P 733-751 %V 55 %N 3 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2112/ %R 10.5802/aif.2112 %G en %F AIF_2005__55_3_733_0
Forstneric, Franc. Extending holomorphic mappings from subvarieties in Stein manifolds. Annales de l'Institut Fourier, Tome 55 (2005) no. 3, pp. 733-751. doi : 10.5802/aif.2112. https://aif.centre-mersenne.org/articles/10.5802/aif.2112/
[1] Compact manifolds and hyperbolicity, Trans. Amer. Math. Soc., Volume 235 (1978), pp. 213-219 | MR | Zbl
[2] Algebraic surfaces holomorphically dominable by , Invent. Math., Volume 139 (2000), pp. 617-659 | DOI | MR | Zbl
[3] A defect relation for equidimensional holomorphic mappings between algebraic varieties, Ann. Math., Volume 95 (1972) no. 2, pp. 557-584 | MR | Zbl
[4] Complete locally pluripolar sets, J. Reine Angew. Math., Volume 412 (1990), pp. 108-112 | MR | Zbl
[5] On the homology groups of Stein spaces and Runge pairs, J. Reine Angew. Math., Volume 371 (1986), pp. 216-220 | MR | Zbl
[6] Cohomology of -convex spaces in top degrees, Math. Z., Volume 204 (1990), pp. 283-295 | DOI | MR | Zbl
[7] Levisches Problem und Rungescher Satz für Teilgebiete Steinscher Mannigfaltigkeiten, Math. Ann., Volume 140 (1960), pp. 94-123 | DOI | MR | Zbl
[8] Intrinsic measures on complex manifolds and holomorphic mappings, Memoirs of the Amer. Math. Soc., 96, American Mathematical Society, Providence, R.I., 1970 | MR | Zbl
[9] The Oka principle for sections of subelliptic submersions, Math. Z., Volume 241 (2002), pp. 527-551 | DOI | MR | Zbl
[10] Noncritical holomorphic functions on Stein manifolds, Acta Math., Volume 191 (2003), pp. 143-189 | DOI | MR | Zbl
[11] The homotopy principle in complex analysis: A survey, Contemporary Mathematics, 332, American Mathematical Society, 2003 | MR | Zbl
[12] Holomorphic submersions from Stein manifolds, Ann. Inst. Fourier, Volume 54 (2004) no. 6, pp. 1913-1942 | DOI | Numdam | MR | Zbl
[13] Runge approximation on convex sets implies Oka's property (2004) (Preprint, http://arxiv.org/abs/math.CV/0402278)
[14] Holomorphic flexibility properties of complex manifolds (2004) (Preprint, http://arxiv.org/abs/math.CV/0401439)
[15] Oka's principle for holomorphic fiber bundles with sprays, Math. Ann., Volume 317 (2000), pp. 117-154 | DOI | MR | Zbl
[16] Oka's principle for holomorphic submersions with sprays, Math. Ann., Volume 322 (2002), pp. 633-666 | DOI | MR | Zbl
[17] Extending holomorphic sections from complex subvarieties, Math. Z., Volume 236 (2001), pp. 43-68 | DOI | MR | Zbl
[18] Approximationssätze für holomorphe Funktionen mit Werten in komplexen Räumen, Math. Ann., Volume 133 (1957), pp. 139-159 | DOI | MR | Zbl
[19] Holomorphe Funktionen mit Werten in komplexen Lieschen Gruppen, Math. Ann., Volume 133 (1957), pp. 450-472 | DOI | MR | Zbl
[20] Analytische Faserungen über holomorph-vollständigen Räumen, Math. Ann., Volume 135 (1958), pp. 263-273 | DOI | MR | Zbl
[21] Oka's principle for holomorphic sections of elliptic bundles, J. Amer. Math. Soc., Volume 2 (1989), pp. 851-897 | MR | Zbl
[22] Analytic functions of several complex variables, Prentice--Hall, Englewood Cliffs, 1965 | MR | Zbl
[23] Andreotti-Grauert Theory by Integral Formulas, Progress in Math., 74, Birkhäuser, Boston, 1988 | MR | Zbl
[24] The Oka-Grauert principle without induction over the basis dimension, Math. Ann., Volume 311 (1998), pp. 71-93 | DOI | MR | Zbl
[25] An Introduction to Complex Analysis in Several Variables, Third ed. North Holland, Amsterdam, 1990 | MR | Zbl
[26] Intrinsic distances, measures and geometric function theory, Volume 82 (1976) no. Bull. Amer. Math. Soc., pp. 357-416 | MR | Zbl
[27] Meromorphic mappings onto compact complex spaces of general type, Invent. Math., Volume 31 (1975), pp. 7-16 | DOI | MR | Zbl
[28] Holomorphic mappings of polydiscs into compact complex manifolds, J. Diff. Geom., Volume 6 (1971-72), pp. 33-46 | MR | Zbl
[29] Mapping cylinders and the Oka principle (2004) (Preprint, http://www.math.uwo.ca/ larusson/papers/)
[30] The Levi problem for complex spaces, Math. Ann., Volume 142 (1961), pp. 355-365 | DOI | MR | Zbl
[31] Algebraische Varietäten und -vollständige komplexe Räume, Math. Z., Volume 200 (1989), pp. 547-581 | DOI | MR | Zbl
[32] Stetige streng pseudoconvexe Funktionen, Math. Ann., Volume 175 (1968), pp. 257-286 | MR | Zbl
[33] Every Stein subvariety admits a Stein neighborhood, Invent. Math., Volume 38 (1976), pp. 89-100 | DOI | MR | Zbl
[34] Elements of Homotopy Theory, Graduate Texts in Math, 61, Springer-Verlag, 1978 | MR | Zbl
Cité par Sources :