Symbolic discrepancy and self-similar dynamics
Annales de l'Institut Fourier, Volume 54 (2004) no. 7, pp. 2201-2234.

We consider subshifts arising from primitive substitutions, which are known to be uniquely ergodic dynamical systems. In order to precise this point, we introduce a symbolic notion of discrepancy. We show how the distribution of such a subshift is in part ruled by the spectrum of the incidence matrices associated with the underlying substitution. We also give some applications of these results in connection with the spectral study of substitutive dynamical systems.

Nous considérons des systèmes dynamiques naturellement associés aux substitutions primitives et connus pour être uniquement ergodiques. Afin d'étudier plus précisément cette propriété, nous introduisons différentes notions de discrépance symbolique. Nous montrons comment les propriétés de répartition d'un tel système sont en partie déterminées par les matrices d'incidences associées à la substitution sous-jacente. Nous donnons également certaines applications de ces résultats à l'étude spectrale des systèmes dynamiques substitutifs.

DOI: 10.5802/aif.2079
Classification: 11K38, 37A30, 37A45, 37B10, 68R15
Keywords: Discrepancy, substitutions, subshifts, bounded remainder sets, self-similar dynamics
Mot clés : discrépance, substitutions, sous-shifts, ensembles à restes bornés, dynamiques auto-similaires

Adamczewski, Boris 1

1 Université Lyon-I, bât Braconnier, Institut Gérard Desargues, CNRS, 21 avenue Claude Bernard, 69622 Villeurbanne Cedex (France)
@article{AIF_2004__54_7_2201_0,
     author = {Adamczewski, Boris},
     title = {Symbolic discrepancy and self-similar dynamics},
     journal = {Annales de l'Institut Fourier},
     pages = {2201--2234},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {54},
     number = {7},
     year = {2004},
     doi = {10.5802/aif.2079},
     zbl = {1066.11032},
     mrnumber = {2139693},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2079/}
}
TY  - JOUR
AU  - Adamczewski, Boris
TI  - Symbolic discrepancy and self-similar dynamics
JO  - Annales de l'Institut Fourier
PY  - 2004
SP  - 2201
EP  - 2234
VL  - 54
IS  - 7
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2079/
DO  - 10.5802/aif.2079
LA  - en
ID  - AIF_2004__54_7_2201_0
ER  - 
%0 Journal Article
%A Adamczewski, Boris
%T Symbolic discrepancy and self-similar dynamics
%J Annales de l'Institut Fourier
%D 2004
%P 2201-2234
%V 54
%N 7
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.2079/
%R 10.5802/aif.2079
%G en
%F AIF_2004__54_7_2201_0
Adamczewski, Boris. Symbolic discrepancy and self-similar dynamics. Annales de l'Institut Fourier, Volume 54 (2004) no. 7, pp. 2201-2234. doi : 10.5802/aif.2079. https://aif.centre-mersenne.org/articles/10.5802/aif.2079/

[1] B. Adamczewski Codages de rotations et phénomènes d'autosimilarité, J. Théor. Nombres Bordeaux, Volume 14 (2002), pp. 351-386 | DOI | Numdam | MR | Zbl

[2] B. Adamczewski Répartitions des suites (nα) n et substitutions, Acta Arith., Volume 112 (2004), pp. 1-22 | DOI | MR | Zbl

[3] M.D. Boshernitzan; C.R. Carroll An extension of Lagrange's theorem to interval exchange transformations over quadratic fields, J. Anal. Math., Volume 72 (1997), pp. 21-44 | DOI | MR | Zbl

[4] J. Brillhart; P. Erdős; P. Morton On sums of Rudin-Shapiro coefficients II, Pacific J. Math., Volume 107 (1983), pp. 39-69 | MR | Zbl

[5] J. Coquet A summation formula related to the binary digits, Invent. Math., Volume 73 (1983), pp. 107-115 | DOI | MR | Zbl

[6] F.M. Dekking On the distribution of digits in arithmetic sequences, Seminar on number theory, 1982-1983 (Talence, 1982/1983), Volume exp. no 32 (1983), pp. 1-12 | Zbl

[7] M. Drmota; R.F. Tichy Sequences, discrepancies and applications, Springer-Verlag, Berlin, 1997 | MR | Zbl

[8] J.-M. Dumont; A. Thomas. Systèmes de numération et fonctions fractales relatifs aux substitutions, Theoret. Comput. Sci., Volume 65 (1989), pp. 153-169 | DOI | MR | Zbl

[9] J.-M. Dumont; A. Thomas Digital sum problems and substitutions on a finite alphabet, J. Number Theory, Volume 39 (1991), pp. 351-366 | DOI | MR | Zbl

[10] F. Durand A characterization of substitutive sequences using return words, Discrete Math., Volume 179 (1998), pp. 89-101 | DOI | MR | Zbl

[11] F. Durand Linearly recurrent subshifts have a finite number of non-periodic subshift factors, Ergodic Theory Dynam. Systems, Volume 20 (2000), pp. 1061-1078 | DOI | MR | Zbl

[12] F. Durand Combinatorial and dynamical study of substitutions around the theorem of cobham, Dynamics and Randomness, Nonlinear Phenomena and Complex Systems (2002), pp. 53-94 | Zbl

[13] H. Furstenberg; H. Keynes; L. Shapiro Prime flows in topological dynamics, Israel J. Math., Volume 14 (1973), pp. 26-38 | DOI | MR | Zbl

[14] G. Halász Remarks on the remainder in Birkhoff's ergodic theorem, Acta Math. Acad. Sci. Hungar., Volume 28 (1976), pp. 389-395 | DOI | MR | Zbl

[15] C. Holton; L.Q. Zamboni Geometric realizations of substitutions, Bull. Soc. Math. France, Volume 126 (1998), pp. 149-179 | EuDML | Numdam | MR | Zbl

[16] H. Kesten On a conjecture of Erdős and Szüsz related to uniform distribution mod1, Acta Arith., Volume 12 (1966/1967), pp. 193-212 | EuDML | MR | Zbl

[17] L. Kuipers; H. Niederreiter Uniform distribution of sequences, Pure and Applied Mathematics, Wiley-Interscience, New York, 1974 | MR | Zbl

[18] D. Lind; B. Marcus An introduction to symbolic dynamics and coding, Cambridge University Press, Cambridge, 1995 | MR | Zbl

[19] P. Michel Stricte ergodicité d'ensembles minimaux de substitution, C. R. Acad. Sci. Paris Sér. A, Volume 278 (1974), pp. 811-813 | MR | Zbl

[20] K. Petersen On a series of cosecants related to a problem in ergodic theory, Compos. Math., Volume 26 (1973), pp. 313-317 | EuDML | Numdam | MR | Zbl

[21] M. Queffélec. Substitution dynamical systems - Spectral analysis, Lecture Notes in Mathematics, 1294, Springer-Verlag, Berlin, 1987 | MR | Zbl

[22] G. Rauzy Nombres algébriques et substitutions, Bull. Soc. Math. France, Volume 110 (1982), pp. 147-178 | EuDML | Numdam | MR | Zbl

[23] G. Rauzy Sequences defined by iterated morphisms, Sequences (Naples/Positano, 1988) (1990), pp. 275-286 | Zbl

[24] A. Siegel Représentation géométrique, combinatoire et arithmétique des systèmes substitutifs de type Pisot (2000) (Thèse de doctorat de l'Université de la Méditerranée)

[25] N.B. Slater Gaps and steps for the sequence nθmod1, Proc. Cambridge Philos. Soc., Volume 63 (1967), pp. 1115-1123 | DOI | MR | Zbl

[26] B. Solomyak On the spectral theory of adic transformations, Representation theory and dynamical systems (1992), pp. 217-230 | Zbl

Cited by Sources: