We first provide an approach to the conjecture of Bierstone-Milman-Pawłucki on Whitney’s problem on extendability of functions. For example, the conjecture is affirmative for classical fractal sets. Next, we give a sharpened form of Spallek’s theorem on flatness.
Nous proposons une approche d’une conjecture de Bierstone-Milman-Pawłucki sur le problème de Whitney concernant le prolongement des fonctions. Elle permet de montrer que la conjecture est vraie pour des ensembles fractals classiques. Nous obtenons ensuite un raffinement d’un théorème de Spallek sur la platitude.
Classification: 26B05
Keywords: Whitney's problem, Spallek's theorem, smooth functions, higher order paratangent bundle, flatness, multi-dimensional Vandermonde matrix, self-similar set
@article{AIF_2004__54_6_1811_0, author = {Izumi, Shuzo}, title = {Restrictions of smooth functions to a closed subset}, journal = {Annales de l'Institut Fourier}, pages = {1811--1826}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {54}, number = {6}, year = {2004}, doi = {10.5802/aif.2067}, mrnumber = {2134225}, zbl = {1083.26009}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2067/} }
TY - JOUR TI - Restrictions of smooth functions to a closed subset JO - Annales de l'Institut Fourier PY - 2004 DA - 2004/// SP - 1811 EP - 1826 VL - 54 IS - 6 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2067/ UR - https://www.ams.org/mathscinet-getitem?mr=2134225 UR - https://zbmath.org/?q=an%3A1083.26009 UR - https://doi.org/10.5802/aif.2067 DO - 10.5802/aif.2067 LA - en ID - AIF_2004__54_6_1811_0 ER -
Izumi, Shuzo. Restrictions of smooth functions to a closed subset. Annales de l'Institut Fourier, Volume 54 (2004) no. 6, pp. 1811-1826. doi : 10.5802/aif.2067. https://aif.centre-mersenne.org/articles/10.5802/aif.2067/
[AS] Multivariate splines and polynomial interpolation, Russian Math. Surveys, Tome 48 (1993) no. 5, pp. 1-72 | MR: 1258755 | Zbl: 0813.41027
[B] Introduction à la géométrie infinitésimale directe, Vuibert, Paris, 1932 | JFM: 58.0086.03 | Zbl: 0005.37501
[BMP1] Composite differentiable functions, Duke Math. J., Tome 83 (1996), pp. 607-620 | Zbl: 0868.32011
[BMP2] Differentiable functions defined in closed sets. A problem of Whitney, Invent. Math., Tome 151 (2003), pp. 329-352 | Zbl: 1031.58002
[C] Convergence, Ann. Inst. Fourier, Tome 23 (1948), pp. 57-112 | Numdam | Zbl: 0031.28101
[F] Techniques in fractal geometry, John-Wiley and Sons, 1997 | MR: 1449135 | Zbl: 0869.28003
[G1] Études de quelques algèbres tayloriennes, J. Anal. Math., Tome 6 (1958), pp. 1-124 | MR: 101294 | Zbl: 0091.28103
[G2] L'interpolation des fonctions différentiables de plusieurs variables, Proceedings of Liverpool singularities symposium II (Lecture Notes in Math.) Tome 209 (1971), pp. 1-33 | Zbl: 0214.08001
[I] Flatness of differentiable functions along a subset of a real analytic set, J. Anal. Math., Tome 86 (2002), pp. 235-246 | MR: 1894483 | Zbl: 1032.32007
[K] A natural interpolation of functions, J. Approx. Theory, Tome 29 (1980), pp. 278-293 | MR: 598722 | Zbl: 0492.41008
[MM] A formula for Kergin interpolation in , J. Approx. Theory, Tome 29 (1980), pp. 294-296 | MR: 598723 | Zbl: 0454.41002
[S] -Platte Funktionen auf semianalytischen Mengen, Math. Ann., Tome 227 (1977), pp. 277-286 | MR: 450630 | Zbl: 0333.32025
[W1] Analytic extensions of differentiable functions defined in closed sets, Trans. Amer. Math. Soc., Tome 36 (1934), pp. 63-89 | JFM: 60.0217.01 | MR: 1501735 | Zbl: 0008.24902
[W2] Differentiable functions defined in closed sets. I, Trans. Amer. Math. Soc., Tome 36 (1934) no. 2, pp. 369-387 | MR: 1501749 | Zbl: 0009.20803
[YHK] Mathematics of Fractals, Transl. Math. Monog., Tome 167, Amer. Math. Soc., Providence, 1997 | MR: 1471705 | Zbl: 0888.58030
Cited by Sources: