Restrictions of smooth functions to a closed subset
Annales de l'Institut Fourier, Volume 54 (2004) no. 6, pp. 1811-1826.

We first provide an approach to the conjecture of Bierstone-Milman-Pawłucki on Whitney’s problem on C d extendability of functions. For example, the conjecture is affirmative for classical fractal sets. Next, we give a sharpened form of Spallek’s theorem on flatness.

Nous proposons une approche d’une conjecture de Bierstone-Milman-Pawłucki sur le problème de Whitney concernant le prolongement C d des fonctions. Elle permet de montrer que la conjecture est vraie pour des ensembles fractals classiques. Nous obtenons ensuite un raffinement d’un théorème de Spallek sur la platitude.

DOI: 10.5802/aif.2067
Classification: 26B05
Keywords: Whitney's problem, Spallek's theorem, smooth functions, higher order paratangent bundle, flatness, multi-dimensional Vandermonde matrix, self-similar set
Mot clés : Problème de Whitney, théorème de Spallek, fonction différentiable, fibré paratangent d'ordre supérieur, platitude, matrice de Vandermonde multi-dimensionnelle
Izumi, Shuzo 1

1 Kinki University,Department of Mathematics, Kowakae Higashi-Osaka 577-8502 (Japan)
@article{AIF_2004__54_6_1811_0,
     author = {Izumi, Shuzo},
     title = {Restrictions of smooth functions to a closed subset},
     journal = {Annales de l'Institut Fourier},
     pages = {1811--1826},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {54},
     number = {6},
     year = {2004},
     doi = {10.5802/aif.2067},
     zbl = {1083.26009},
     mrnumber = {2134225},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2067/}
}
TY  - JOUR
AU  - Izumi, Shuzo
TI  - Restrictions of smooth functions to a closed subset
JO  - Annales de l'Institut Fourier
PY  - 2004
SP  - 1811
EP  - 1826
VL  - 54
IS  - 6
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2067/
DO  - 10.5802/aif.2067
LA  - en
ID  - AIF_2004__54_6_1811_0
ER  - 
%0 Journal Article
%A Izumi, Shuzo
%T Restrictions of smooth functions to a closed subset
%J Annales de l'Institut Fourier
%D 2004
%P 1811-1826
%V 54
%N 6
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.2067/
%R 10.5802/aif.2067
%G en
%F AIF_2004__54_6_1811_0
Izumi, Shuzo. Restrictions of smooth functions to a closed subset. Annales de l'Institut Fourier, Volume 54 (2004) no. 6, pp. 1811-1826. doi : 10.5802/aif.2067. https://aif.centre-mersenne.org/articles/10.5802/aif.2067/

[AS] A.A. Akopyan; A.A. Saakyan Multivariate splines and polynomial interpolation, Russian Math. Surveys, Volume 48 (1993) no. 5, pp. 1-72 | MR | Zbl

[B] G. Bouligand Introduction à la géométrie infinitésimale directe, Vuibert, Paris, 1932 | JFM | Zbl

[BMP1] E. Bierstone; P. Milman; W. Pawłucki Composite differentiable functions, Duke Math. J., Volume 83 (1996), pp. 607-620 | Zbl

[BMP2] E. Bierstone; P. Milman; W. Pawłucki Differentiable functions defined in closed sets. A problem of Whitney, Invent. Math., Volume 151 (2003), pp. 329-352 | Zbl

[C] G. Choquet Convergence, Ann. Inst. Fourier, Volume 23 (1948), pp. 57-112 | Numdam | Zbl

[F] K. Falconer Techniques in fractal geometry, John-Wiley and Sons, 1997 | MR | Zbl

[G1] G. Glaeser Études de quelques algèbres tayloriennes, J. Anal. Math., Volume 6 (1958), pp. 1-124 | MR | Zbl

[G2] G. Glaeser; ed. C.T.C. Wall L'interpolation des fonctions différentiables de plusieurs variables, Proceedings of Liverpool singularities symposium II (Lecture Notes in Math.), Volume 209 (1971), pp. 1-33 | Zbl

[I] S. Izumi Flatness of differentiable functions along a subset of a real analytic set, J. Anal. Math., Volume 86 (2002), pp. 235-246 | MR | Zbl

[K] P. Kergin A natural interpolation of 𝒞 K functions, J. Approx. Theory, Volume 29 (1980), pp. 278-293 | MR | Zbl

[MM] C.A. Micchelli; P. Milman A formula for Kergin interpolation in k , J. Approx. Theory, Volume 29 (1980), pp. 294-296 | MR | Zbl

[S] K. Spallek -Platte Funktionen auf semianalytischen Mengen, Math. Ann., Volume 227 (1977), pp. 277-286 | MR | Zbl

[W1] H. Whitney Analytic extensions of differentiable functions defined in closed sets, Trans. Amer. Math. Soc., Volume 36 (1934), pp. 63-89 | JFM | MR | Zbl

[W2] H. Whitney Differentiable functions defined in closed sets. I, Trans. Amer. Math. Soc., Volume 36 (1934) no. 2, pp. 369-387 | MR | Zbl

[YHK] M. Yamaguti; M. Hata; J. Kigami Mathematics of Fractals, Transl. Math. Monog., 167, Amer. Math. Soc., Providence, 1997 | MR | Zbl

Cited by Sources: