[Sur le théorème de l'indice pour orbifoldes symplectiques]
Nous donnons une construction explicite de la trace sur l'algèbre des observables quantiques sur une orbifolde symplectique et proposons une formule de l'indice.
We give an explicit construction of the trace on the algebra of quantum observables on a symplectiv orbifold and propose an index formula.
Fedosov, Boris 1 ; Schulze, Bert-Wolfang  ; Tarkhanov, Nikolai 1
@article{AIF_2004__54_5_1601_0, author = {Fedosov, Boris and Schulze, Bert-Wolfang and Tarkhanov, Nikolai}, title = {On the index theorem for symplectic orbifolds}, journal = {Annales de l'Institut Fourier}, pages = {1601--1639}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {54}, number = {5}, year = {2004}, doi = {10.5802/aif.2061}, zbl = {1071.53055}, mrnumber = {2127860}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2061/} }
TY - JOUR AU - Fedosov, Boris AU - Schulze, Bert-Wolfang AU - Tarkhanov, Nikolai TI - On the index theorem for symplectic orbifolds JO - Annales de l'Institut Fourier PY - 2004 SP - 1601 EP - 1639 VL - 54 IS - 5 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2061/ DO - 10.5802/aif.2061 LA - en ID - AIF_2004__54_5_1601_0 ER -
%0 Journal Article %A Fedosov, Boris %A Schulze, Bert-Wolfang %A Tarkhanov, Nikolai %T On the index theorem for symplectic orbifolds %J Annales de l'Institut Fourier %D 2004 %P 1601-1639 %V 54 %N 5 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2061/ %R 10.5802/aif.2061 %G en %F AIF_2004__54_5_1601_0
Fedosov, Boris; Schulze, Bert-Wolfang; Tarkhanov, Nikolai. On the index theorem for symplectic orbifolds. Annales de l'Institut Fourier, Tome 54 (2004) no. 5, pp. 1601-1639. doi : 10.5802/aif.2061. https://aif.centre-mersenne.org/articles/10.5802/aif.2061/
[1] Elliptic operators and compact groups, Lect. Notes Math 401, Springer-Verlag, 1974 | MR | Zbl
,[2] Deformation theory and quantization, Ann. Phys 111 (1978) p. 61-151 | Zbl
, , , & ,[3] The Spectral Theory of Toeplitz Operators, Princeton University Press, 1981 | MR | Zbl
& ,[4] Aspects semi-classiques de la quantification géométrique, Thèse, Université Paris IX - Dauphine, Paris, 2000
,[5] Spectral invariants of Toeplitz operators over symplectic two-dimensional orbifolds, Preprint, Università di Bologna, 2002
,[6] The Heat Kernel Lefschetz Fixed Point Formula for the Spin-c Dirac Operator, Birkhäuser, 1996 | MR | Zbl
,[7] Qualitative features of intra-molecular dynamics. What can be learned from symmetry and topology?, Acta Applicandae Mathematicae 70 (2002) p. 265-282 | MR | Zbl
& ,[8] A simple geometrical construction of deformation quantization, J. Differential Geom 40 (1994) p. 213-238 | MR | Zbl
,[9] Deformation Quantization and Index Theory, Akademie-Verlag, 1995 | MR | Zbl
,[10] On normal Darboux coordinates, Amer. Math. Soc. Transl 206 (2002) no.2 p. 81-93 | MR | Zbl
,[11] On the trace density in deformation quantization, Walter de Gruyter, 2002, p. 67-83 | Zbl
,[12] On G-trace and G-index in deformation quantization, Lett. Math. Phys 52 (2000) p. 29-49 | MR | Zbl
,[13] The index of elliptic operators over -manifolds, Nagoya Math. J 84 (1981) p. 135-157 | MR | Zbl
,[14] On the deformation quantization of symplectic orbispaces, To appear in Differential Geometry and its Applications, 2003 | MR | Zbl
,[15] Equivariant index formula for orbifolds, Duke Math. J 82 (1996) p. 637-652 | MR | Zbl
,Cité par Sources :