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ON THE INDEX THEOREM FOR

SYMPLECTIC ORBIFOLDS

by Boris FEDOSOV, Bert-Wolfgang SCHULZE
and Nikolai TARKHANOV

1. Introduction.

This paper deals with deformation quantization on a symplectic
orbifold. As is shown in [14], the method of [8] may be generalized almost
without changes to the orbifold case. Our aim here is to construct traces
on the algebra of observables and to introduce the corresponding indices.
For compact orbifolds the latter are, by definition, the traces of the identity
element in the algebra. In contrast to the smooth case, the trace on orbifolds
is not unique. We give a particular construction and then obtain its different
copies induced by the action of the so-called Picard group. This is the

main result of the paper. It is not clear, however, whether this construction
exhausts the set of traces.

We also planned to prove an index theorem for deformation quan-
tization on symplectic orbifolds which gives an index formula in terms of
characteristic classes and the symplectic form. Our hope was that combin-
ing the methods of Kawasaki [13] and Vergne [15] for the index theorem
for elliptic operators on orbifolds on the one hand, with the methods of [9]
for the index theorem for deformation quantization on smooth symplectic
manifolds on the other hand, we would be able to obtain the desired for-
mula. Unfortunately, we did not succeed so far. The matter is that Atiyah’s

Keywords: Star-product - Symmetry group - G-trace - G-index.
Math. classification: 53D55 - 37J 10.
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theory of transversally elliptic operators [1] playing a key role in the proof
of Kawasaki is missing for deformation quantization. Thus, we need either
to develop such a theory from the very beginning or to invent some new
tools. So, the index theorem still remains a conjecture which we hope to
prove in future.

However, we decided to give such a formula as a conjecture in this

paper, since it sheds some new light on the whole concept of deformation
quantization. There are many facts which support it, for instance, a

formula for contributions of fixed point manifolds to the G-index [12],
or a direct calculation of the first three terms. Moreover, for a virtual

bundle with compact support over an orbifold cotangent bundle our index
formula coincides with Kawasaki’s topological index. An example of the
two-dimensional harmonic oscillator in a resonance case considered in the

last section is also an argument in favor of the conjecture. It shows that the
index theorem gives the right spectrum in this case, moreover, the example
clarifies the role of the Picard group: it is responsible for different series of
eigenvalues.

Thinking over the role of the index theorem one encounters a rather
philosophical question: what is the place of the deformation quantization
among other quantization theories. We mention here geometric quantiza-
tion and a semiclassical approach to quantum problems. The latter, in

particular, has a long history summarized in the book [3], recent develop-
ments are presented in the thesis [4]. In particular, in [3] multiplicities were
expressed as integrals of characteristic classes, which is nothing but the in-
dex theorem for a discrete series of admissible Planck constants. Of course,
the multidimensional harmonic oscillator is a touchstone for most of these

theories, see for instance the recent paper [5]. As a rule, the results ob-
tained by semiclassical methods are extremely strong and complete. They
usually are based on a delicate analysis of Fourier integral operators and
often require hard work.

On the contrary, deformation quantization is the most coarse version
of quantization. It would be at least naive to expect here as strong results
as in the semiclassical approach, for nobody will even try to compare the
sportsmen of different weight categories. The fact itself that the spectral
information has been obtained by means of deformation quantization
only, that is what seems really surprising. Indeed, even a statement of
an eigenvalue problem is meaningless in the deformation quantization
framework since the observables are not operators. The example shows,
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however, that the spectral information is hidden somewhere even in purely
deformation quantization approach, and the index theorem becomes a tool
to give the eigenvalue problem a precise meaning and, simultaneously, to
extract the hidden information. Let us explain how this tool works. First
of all, the index in simplest cases is a polynomial in 1/h, so, although h
is a formal parameter, we can calculate the index for positive values of h,
obtaining a numerical value of it. Requiring the obtained value of Tr 1 to be
a positive integer, in analogy to the operator theory, we obtain a constraint
for h which may be considered as a characteristic equation for eigenvalues.
Taking different traces and different non-trivial coefficient bundles, we
obtain more constraints giving more and more precise information about
the spectrum. Hence, the role played by the index theorem in deformation
quantization is quite opposite to the multiplicity formula of [3] : the latter,
knowing the spectrum beforehand, gives the values for multiplicities which
turn out to be positive integers. The former gives conditions which ensure
the integrality of multiplicities.

A natural question arises: If the semiclassical approach gives stronger
results why do we need deformation quantization at all? The answer

is that deformation quantization as a most coarse theory has a wider
field of applications. Indeed, the observables in deformation quantization
have a very simple nature: They are simply classical observables with
successive quantum corrections. So, no prequantization conditions are

required, many important constructions with classical observables such as
symplectic reduction may easily be lifted to the quantum level, and so on.
Of course, we have to pay for such a freedom: we lose essential information

concerning the Schrodinger dynamics, eigenvalues, etc. But having an index
theorem at our disposal, we may reconstruct, at least partly, the lost

spectral information. There are examples coming from purely physical
problems [7] where the coarse methods based on the index theorem still
give a good description of complex molecular spectra, while semiclassical
analysis gives no additional information because of the complexity of the
system.

Passing to the content of the paper, let us first describe for the reader’s
convenience a strategy for most of the calculation schemes in deformation

quantization. In particular, we apply this strategy for a trace construction.
It consists of the following steps:

1° A global construction of the algebra of observables.

2° Localization to a Darboux coordinate chart.
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3° Semiclassical representation of the localized algebra.

4° Calculation with operators leading to an asymptotic power series
in h for the quantity in question (if it exists).

5° Returning to deformation quantization setting.

The latter item means that we forget about the asymptotic character
of the series treating it as a formal one. But we also need to prove that
the result is well defined, that is it does not depend on the choices made
in items 2° and 3°.

The local structure of orbifolds and orbifold vector bundles is investi-

gated in Sections 2 and 3. We also give here a brief description of the Picard

group. The first and the second items of our above-mentioned program are

briefly discussed in Section 4. Section 5 deals with a local operator represen-
tation of the localized algebra of observables in the Fock space. Note that
the global operator representation may not exist in general. It is our luck
that the local representation which always exists is sufficient for the trace
calculation. We prove its independence of the special choice of the orbifold
chart using the homotopy considered in Section 2. In Section 6 we formu-
late our conjecture on the index formula. First we give it in a form which is
a natural generalization of the index formula for smooth manifolds (more
precisely, for a smooth component of a fixed point set) and then reduce the
integrand to Kawasaki’s form. The last Section 7 deals with an example of
a two-dimensional harmonic oscillator. As was mentioned above, this is in
favor of the conjecture. We also consider it as a hint that there should be
a reasonable spectral theory for deformation quantization quite different
from the standard operator spectral theory and based on index theorems
and their modifications.

We would like to thank the referee for his critical remarks. Following
them we have essentially shortened the exposition omitting excessive

descriptions (the Picard group, symplectic reduction).

2. Symplectic orbifolds.

As a background on orbifolds we recommend the book [6].
A symplectic orbifold is a Hausdorff topological space B which admits

a locally finite covering with the following properties:
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1° For each Oi there exists a contractible domain Oi in the standard
symplectic space (JR2n, w) and a finite group Gi of symplectomorphisms of

such that Oi is homeomorphic to the orbit space Oi /Gi . We denote by
pi the corresponding projection pi : i5ilGi - Oi. The domains Oi
with the given group action are called orbifold charts.

2° If for two orbifold and 10k,6k,GkPkl
the intersection Oj n O~ is not empty, then there exists an orbifold chart
f 0, O, G,p} such that x E 0 C and O is subordinate to both Oj and
O~ in the following sense: There are symplectomorphic open embeddings

and group embeddings

such that the maps (2.1) are equivariant with respect to the homomor-
phisms (2.2).

For a point x E Oi take one of its preimages x E OZ and consider
a subgroup G(x) c Gi leaving x fixed. It is called a stabilizer or isotropy
subgroup of x. Any other preimage has the form ’"’(x for some -y E Gi, so
that

We see that G(1X) may be obtained by conjugation from G(x). In partic-
ular, and G(x) are isomorphic, and we may introduce the stabilizer
of x E Oi as a group isomorphic to any of G(x). Moreover, the condi-
tions (2.1), (2.2) imply that G(x) is independent of the chart up to an
isomorphism, so the notion of the isotropy group G(x) makes sense for a
point .c C B.

A similar situation holds if we replace a point x by a small orbifold
chart 0 subordinate to Oj . Then we have an equivariant embedding

Let 11, 12, ... , 1m be representatives of the cosets Gjli (G). Then, if 6 is
small enough, the domains 1kCP(Õ) do not intersect each other, and we have
m distinct equivariant embeddings 

- -
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so that the projection pj : Oj over O = p(O) is a covering map with
m leaves.

THEOREM 2.1. - For any compact symplectic orbifold B there
exists a covering by orbifold charts with the following
properties:

1° In each Oj there exists a point z j called the center, such that G (z j )
coincides with Gj .

2° There is a Gj -invariant complex structure on Oj, such that Oj is
a neighborhood of the origin in C’ with the symplectic form

3° Gj acts on Oj by unitary transformation, that is Gj is a finite

subgroup of U(n).

This is the so-called linearization theorem.

Proof. Take a point xo C B and an orbifold chart f 0, C), G,p}
containing xo . Pick one of the preimages 3io E O and a smaller neigh-
borhood Õ1 C_ O, such that "YÕ1 n Oi # 0 implies -/ E Then

01, O1, is a smaller orbifold chart. Because of compact-
ness we may choose a finite covering of such a form, proving 1 ° . Further

we will consider only orbifold charts together with their centers.

Let f 0, C), G,p} be an orbifold chart with the center xo, so that .To
coincides with 0 C Introduce a G -invariant Riemannian metric a on

O (averaging over a finite group G makes any metric G-invariant). On
the tangent space ToJR2n = JR2n the group G acts by orthogonal linear
transformations. The exponential map defined by a

intertwines this linear action with the original action on 6 C JR2n. Thus,
in normal coordinates the inclusion G c SO(2n) is valid, in other words,
we have linearized the group action. The determinant is equal to 1 because
the orientation given by the form cv is preserved.

Consider now the form w in normal coordinates
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We apply a G -invariant version of the Weinstein-Moser trick to reduce w
to the constant form

Consider the family of forms ~ I

they are G -invariant and

where A = dxi is a one-form. We may assume that A is G-invariant

since the averaging defines a new form A also satisfying (2.5). Moreover, we
may assume that Az (0) = 0, otherwise we replace it by (Ài(X) - Ai (0)) dxi,
which also satisfies (2.5) and is G -invariant. It gives a G -invariant vector
field Xt vanishing at the origin and satisfying

The flow ft (x) of this vector field is defined on the whole interval t E [0, 1]
for sufficiently small x, because Xt(0) = 0. Moreover, the flow commutes
with the linear G -action since Xt is G -invariant. Then few = wo, because,
by virtue of the Cartan homotopy formula,

At this step we have a constant symplectic form wo preserved by the group
G c SO(2n).

Taking any constant G-invariant metric a and applying a standard
construction (see for instance [9, Ch. 2]), we obtain a G-invariant positive
complex structure J and a new metric ao = wo(J., .). The symplectic space

with the complex structure J becomes the form ao + zwo gives a
Hermitian metric and the group G which preserves this Hermitian metric

is thus a subgroup of 0

For paracompact orbifolds the existence of such a linearized covering
will be assumed. In some cases (for example, for vector bundles over a
compact base B) this assumption may be proved.

Next, we consider the whole set of symplectic linearizations of a fixed

orbifold chart O. We will show that this set is connected, provided that
O is small enough. In other words, any two linearizations may be linked
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by a smooth one-parameter family. This fact will be crucial for the trace
construction in Section 5.

Let O be an orbifold chart with the finite group G of symplectomor-
phisms, xo =_ 0 being its center. Suppose we have two Darboux coordinate
systems in O, namely x = (xl, ... , x2n) and y - (y 1, ... , 2J2n), so that G
acts by linear symplectomorphisms in both coordinate systems

where g, g E Sp(2n). To put it differently, x and y are related by a non-
linear symplectomorphism

with the property

THEOREM 2.2. - There exists a smooth family ft(x), t E [0, 1], of
symplectomorphisms defined in a smaller neighborhood of the origin such
that f o (x) = x, = f (x) and f t (x) satisfies the relation (2.9) for each
t E [0, 1].

Remark 2.3. - Geometrically this theorem means that there exists
an equivariant interpolation between two linearized orbifold charts. It is,
however, not quite obvious. Our proof gives a way to linearize this procedure
using generating functions.

Proof. Consider first the case when the linear part of (2.8) is

identity, that is

Comparing the linear parts on both sides of (2.10), we see that g = g.
To construct the homotopy ft(x) we will use generating functions (see for
instance [9, Section 2.4] or [10]).

Let the symplectomorphism (2.8) correspond to the Cayley generating
function S, that is, the relation y = f (x) is obtained by elimination of the
auxiliary variable z from the following two equations
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Here VS means the symplectic gradient, it is a vector satisfying the relation
-dS, or in coordinates

From (2.11) it follows that

and further, taking S(0) = 0, we get

It is easy to verify that equations (2.11) actually define a symplectomor-
phism provided we can express z as an implicit function of x from the first
equation (2.11). This is always the case in a neighborhood of the origin
if ,S’(z) has a third order zero at z = 0. Vice versa, if the linear part of

f (x) is identity then x may be defined as an implicit function of z and the
integrand in (2.13) is a closed form.

LEMMA 2.4. - A symplectomorphism y = f (x) defined by a
generating function S(z) satisfies (2.9) if and only if the generating function
is invariant, i.e.

Proof. Differentiating (2.14), we get

and further, applying g to both sides,

Here we have used the fact that g is a symplectic matrix, thus (

In other words, the vector VS(z) satisfies the relation

Then ( 2 .11 ) yields
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where we have denoted gz by z. Eliminating z from these equations, we see
that gx and gy satisfy the same relation gy = f (gx) as x and y, whence

Vice versa, let (2.9) be fulfilled. Then the action implies

We thus get

and this, in turn, implies by virtue of (2.14) that ,S’(z) is invariant 0

Now, to construct the homotopy ft (z), we take the generating func-
tion S(z) of the original symplectomorphism f (x), multiply it by t E [0, 1]
and then consider the symplectomorphisms defined by the generating func-
tions tS(z). Because of (2.15) ,S’(z) is invariant, hence so is tS(z), implying
that (2.15) is fulfilled for any t. This proves the theorem in the special case
(2.10).

In the general case we rewrite the symplectomorphism f (x) in the
form

where ab + ax is the linear part and S
ab = f (0), and the property (2.9) gives us

Hence it follows that 9 == aga-1, gb = b and The group

Sp(2n) is connected, thus there exists a path at E Sp(2n) linking a with
the identity matrix 1. After this homotopy the symplectomorphism (2.16)
takes the form y = b + x -I- p(z) and moreover, 9 = g. The vector b belongs
to ker(g - 1) for any g E G, and so does tb for any t E [0, 1]. Thus, we can
pull b to zero. Our symplectomorphism then becomes

and this can be linked to the identity, as was already proved. D

Remark 2.5. - The homotopy ft(x) constructed in the theorem
may be extended to a positive complex structure J. Indeed, let J be a
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constant complex structure making the symplectic space JR2n into en and
the group G c Sp(2n) into a subgroup of U(n). It defines a constant metric
cx = w(J., .). Having a homotopy y - f t (x) of the constant symplectic
structure and the corresponding group Gt c Sp(2n) we define a new metric
at by averaging a with respect to Gt and then construct a positive complex
structure Jt in a standard way starting with two bilinear forms w and at.

The group G for an orbifold chart O is not uniquely defined. For
example, the chart 0 = where Z3 acts by multiplication by

may be replaced by the chart (C/Z6 with the same action as in (2.17)
but with 1~ E Z mod 6. In the second case the action is not effective:

the subgroup with = 31 mod 6 acts as identity. In general, denoting
by Go c G a subgroup which acts on O as identity, we can pass on to
the effective action by replacing G by the quotient G/Go (clearly, Go is a
normal subgroup). So, we will assume as a rule that the actions of Gi on OZ
are effective. In this case we have an open dense set Bo c B, the so-called

principal stratum, such that each point x E Bo has a trivial stabilizer. This
is a smooth part of the orbifold B. The remaining points form singularities,
which in general may be very complicated. In the above example (2.17) we
have the only singular point z = 0 which is a conical point.

Singular points (the points with non-trivial stabilizer) admit further
stratification but we will not touch this subject here.

Although B may have rather complicated singularities, the notion of
a smooth function still makes sense for orbifolds. Namely, if its

lifting to any orbifold chart 0 is smooth and necessarily G-invariant, that is

Thus, a possibility appears to develop analysis and differential geom-
etry on orbifolds.

3. Orbifold vector bundles.

The notion of orbifold vector bundle requires some precautions. A
naive definition is that E is a continuous vector bundle over a topological
space B, which may be described by means of smooth functions. For

example, any matrix-valued function
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whose values are projectors and whose entries Pij (x) are smooth functions
defines an orbifold vector bundle. But this definition is too restrictive, even
tangent and cotangent bundles do not fit into this scheme.

DEFINITION 3.1. - An orbifold vector bundle E is an object which

in an orbifold chart f 0, 0, G, p~ is given by a G -equivariant vector bundle
EG. These local equivariant bundles should be compatible with respect to
symplectomorphisms (2.1) and homomorphisms (2.2).

Thus, the total space of E is an orbifold itself, with the same local
groups Gi as for the base B. For the orbifold bundles we have a linearization
theorem similar to Theorem 2.1.

THEOREM 3.2. - Let E be an orbifold vector bundle. Then for
any linearized orbifold chart 10, Õ, G, pl, G C U(n), there exists a frame
of the bundle EG and a complex representation g - T(g) E End(Eo), such
that the sections s(z, z) are vector-valued functions with values in Eo, and
the group G acts on sections as follows

Proof. The point x E 0 may be written as a pair z, z with z E C ,
and we will use both designations x and z, z. Choosing any frame of EG
over O, we consider the sections s(x) as vector-valued functions. By the
definition of the equivariant vector bundle we have the action of the group
G on sections by s(g3i) = s(x), where the matrix-valued function

defines a linear map

At the origin 0 E 0 which is a fixed point we have thus endomorphisms
T(~)(0) : Ego - Eo, and this is the desired representation. Clearly, we can
make it unitary by introducing a Hermitian metric and averaging it over
the finite group.

In order to construct the needed frame we now choose a G -invariant

Hermitian connection on E (again using the averaging), take any unitary
frame in Eo and spread it over the whole 0 by parallel transports along
the rays tx, t E [0,1 . D

Remark 3.3. - For linearized coordinates z, z and frames (3.2), the
simplest invariant connection is given by the de Rham differential ds(z, z)
of vector-valued functions.



1613

Now, smooth vector fields, differential forms and other geometric
objects are defined as sections of corresponding orbifold vector bundles
TB, T*B and so on.

The integral of a differential form of top degree over the orbifold B
is defined in an obvious way. We take a smooth partition of unity pi (x) on
B. When lifted to an orbifold chart 6i, the function pi (x) is smooth and

Gi -invariant, and we define

where cxi is a local expression of the form a. Now, since =

where Xi (¡r) is a one-dimensional character, the integrals are
equal to zero unless - 1. In the latter case we may consider 

as the form coming from B, and the integral will be simply equal to

that is the integral over the smooth part Bo of B.

We have tacitly assumed that the group Gi acts effectively. In general,
when the action is not effective, we pass to the quotient Gi - Gi /Go
where Go is a normal subgroup of Gi acting as identity. By compatibility
conditions (2.1) and (2.2), the number m(B) _ ~Go ~ does not depend on the
chart (for connected orbifolds), it is called the multiplicity of the orbifold.
Then one defines

We finish this section by introducing an important notion of the
Picard group. To this end, consider the set £1 of flat one-dimensional

orbifold vector bundles. Flatness means that any bundle E1 E E’ is

equipped with a connection 9 whose curvature vanishes. Such bundles form
an Abelian group with respect to tensor product. In linearized charts Oi
the action (3.2) defines one-dimensional representations of local groups Gi,
that is characters of Gi. Thus, we have a homomorphism

where x(Gi) means the group of characters of Gi. We define the Picard
group by
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A subgroup £1 = ker x consists of those one-dimensional flat bundles E1,
for which the actions of all local groups are trivial. It means that they come
from the base, that is have a description (3.1 ) .

The group £1 acts by tensoring on any orbifold vector bundle E. We
would like to mention two obvious properties of this action, they will be of
great importance in the sequel.

1° If E is a bundle with a connection 0 then E (9 E1 has a connection
with the same curvature for any E1 E ~1.

2° In linearized orbifold charts this action consists in the replacement

of local representations Ti by In particular, it depends only on the
class of E1 in the Picard group.

4. Deformation quantization.

We use the standard scheme of deformation quantization described
in [8]. For symplectic orbifolds it was generalized in [14]. The scheme was
discussed many times in the literature, so we need not repeat it here in

detail. Yet, to fix notation, we give a brief survey.

The starting data are:

1° a symplectic orbifold B with a symplectic connection 9s;

2° an orbifold vector bundle E with a connection 8E .

We emphasize that the connections 88 and 8E are global objects.
They give rise to a global procedure of deformation quantization, although
the construction is given in terms of local charts of Theorems 2.1 and 3.2.

We will consider quantization with a non-trivial coefficient bundle K,
namely .K = End E.

The algebra A° of classical observables with coefficients in K consists,
by definition, of all sections of the bundle K, that is A° = C°° (B, K) . In
an orbifold chart 6i a section a C A° is given by a matrix-valued function
a(l§) satisfying equivariance relations similar to (3.2),

for g E G2. Note that A° is an algebra (non-commutative in general) with
respect to the pointwise matrix product. The connection o9E on E defines
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an associated connection on K which we will denote by the same symbol
~E ~

To construct an algebra Ah of quantum observables and a quantiza-
tion map

consider the so-called Weyl bundle with coefficients in K. Its sections over
linearized orbifold charts are "functions"

Here x E Oi, y E and h is a formal parameter. The coefficients 
are matrix-valued functions, and the series (4.2) is understood as a formal
one whose terms are ordered by total degrees 21~ + These "functions"

should possess the invariance property

for all g E Ci, similar to (4.1). The space of sections C°° (B, W 0 K) is an
algebra with respect to the pointwise Weyl product

We will also need an extension W+ 0 K of the bundle W ® K obtained

by dropping the requirement 1~ &#x3E; 0 in (4.2). We assume instead that
2k 0 while may be negative. A typical example of a section
of W+ not belonging to W is

B /

Finally, the connections aB and 8E give rise to a connection on the bundle
W 0 K, that is a derivation of the algebra of sections with a local expression

r n ’t

Our aim is to construct a connection

with the property D2a = 0 for any section a (the so-called Abelian
property). Here

Q-
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and

with deg ri &#x3E; 3.

The simplest equation for r to ensure the Abelian property D2 = 0
reads

where

is the curvature of 9.

The following theorem describes the global construction of deforma-
tion quantization (the first step in the program mentioned in the introduc-
tion).

THEOREM 4.1.

1° There exists a unique solution of equation (4.5), such that riyi = 0.

2° For any classical observable a(l§) E AO there exists a unique -flat
section a(x, y, h) of the bundle W 0 K, such that a(x, 0, h) - a(x).

Thus, our global algebra of quantum observables is

and the quantization map Q is given by the second item of the theorem.
Note that Q may be extended by linearity to formal power series in h

Clearly, this extension is a bijection, hence Ah may be also thought of as
the space C°° (B, I~f ) ~~h~~ with a so-called star-product *, which is obtained
from the pointwise Weyl product o by the bijection Q.

Remark 4.2. - The section r in (4.4) depends only on curvatures of
the connections and If these curvatures vanish then r = 0. Moreover,
for any one-dimensional bundle E’ the replacement of E by E 0 El
leads to the same (up to an isomorphism) algebra of quantum observables.

Now, let us pass to the second step of the program, namely, local-
ization to a linearized chart. In fixed Darboux coordinates and in a fixed

frame of E the simplest choice of connections 19B and 8E is the de Rham
differential d with respect to :r. Since d is a flat connection we obtain
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Do = -6 ~- d~ for the Abelian connection (4.4). The quantization map Q
has a simple explicit form

where by the right-hand side is meant a formal Taylor series. Thus, we have
two algebras of observables, namely the global algebra Ah restricted to 0,
and the algebra Ah0 of flat sections (4.6) with respect to Do. The following
lemma gives an isomorphism of these algebras.

LEMMA 4.3. - There exists an invertible section

such that for any flat section a E Ah In its image under the conjugation

belongs to A3 .

Next, consider a homotopy of the linearized orbifold chart 0

as in Theorem 2.2. The change of variables and the conjugation automor-
phism (4.7) applied to a flat section ao - ao (x + define an

automorphism of the algebra A3, namely

Differentiating in t, we arrive at the following Heisenberg equation (for
more details see [9, Section 5.4])

where H is a section of depending on t.

LEMMA 4.4. - There exists a flat section Ho E Ao , such that (4. 9)
may be rewritten in the form

Proof. - Applying Do to both sides of (4.9) and using the fact that
ao, ao are flat with respect to Do, we get
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Being valid for any flat section ao, this equality implies that DOH is a
central one-form, that is independent of y. This yields

Applying Do to both sides, we get 0 on the left since Do(DoH) == 0. On
the other hand, Docp = dcp since p is a central form. Hence, p = do in the
local chart. It means that the section H = 77 2013 ~ belongs to Ao . Clearly,
the section H in (4.9) may be replaced by H, for they differ by a central
function Q (* , h , t) .

Comparing degrees on both sides of (4.9), one can see that H must
have degree -2, thus it can be rewritten in the form (tlh) Ho with
Ho E m

Finally, we can simplify the algebra Ao putting y = 0 everywhere and
introducing a * -product in its simplest form

instead of the Weyl product o, cf. (4.3).

5. Orbifold trace.

To define the trace we have to consider operator representations of
the quantum algebra Ao and start with the so-called Weyl correspondence
between symbols and pseudodifferential operators. Classical observables

with support in a linearized orbifold chart 0 will be called here Weyl
symbols and denoted by W = W (O) . In particular, we assume that the
Weyl symbols satisfy equivariance relation (4.1). Choose a splitting of
the symplectic space JR2n into a direct sum Rg EB I~P of two Lagrangian
subspaces, so that the symplectic form becomes w = dp A dq. The Weyl
pseudodifferential operator corresponding to a symbol a( x) = a(q, p) E W
acts in L2 (JRn) as

Here h is understood as a numerical parameter in the interval (0,1]. It is
well known that the product of two such operators Op(a(x)) and Op(b(x))
is again an operator of the form Op(c(x, h)) with
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The integral is understood as an oscillatory one. Its asymptotic expansion
at h - 0 is known to coincide with the formal series (4.10) for the star-
product. Thus, we obtain an operator interpretation of the star-product.

More pedantically, the star-product a * b of two formal series h)
and b(x, h) from the algebra Ao with supports in a chart O C JR2n has
the following operator description. To find a finite segment a * b IN of the
formal series a * b up to hN, consider the truncated series

k=U

In these finite sums h may be regarded as a numerical parameter,
so that the operators Op(aIN) and Op(bIN) are meaningful. Their product
provides a symbol c which has an asymptotic expansion in powers of h as
h - 0. The N -th segment of this asymptotic series is precisely the N -
th segment of a * b. This kind of reasoning is often used in deformation

quantization. For instance, the associativity of the star-product (4.10)
immediately follows from the associativity of the operator product.

We will need also the expression for the star-product in complex
coordinates,

Here, using a complex structure, we write x = (z, z) with z E (Cn, the
notation dudu means the Lebesgue measure in C~. We often treat z, u,
v as column vectors, then z*, u*, v* mean the rows of complex conjugate
elements, so that u*v = U1 VI + ... + llnvn is a Hermitian scalar product.
Again we have two expressions for the star-product, namely the integral
one in which by h is meant a numerical parameter, and the formal one
which can be extended to formal power series in h.

We will need another correspondence between symbols and operators,
the so-called representation in the Fock space. It is defined for a fixed

numerical value of h E (0, ] and for a larger symbol class than W. Let S
denote the space of matrix-valued functions a(x) defined on all C,

and satisfying the following estimates: There exists N depending on a, such
that
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holds for any multi-index a. Equivariance relations (4.1) are not assumed
in general for symbols from S.

For such symbols the Weyl correspondence Op(a) is still defined with
the product * given by the integral form of (5.3) or (5.2). Note, however,
that if one of the symbols a or b is a polynomial then the integral in (5.3)
coincides with the series which terminates in this case. Clearly, we have
W c S.

Consider an operator on L 2(R’) with the Weyl symbol

which belongs to S for a fixed positive h. The integral form of the * -product
shows that p * p = p. It means that the operator P = Op(p) is a projector
in L2 (R’). Furthermore, we have

1 p

which means that P is a one-dimensional projector. Now, it follows from

(5.3) that

For this reason zi are called annihilation operators while zi i creation

operators. As a linear space the Fock space is generated by the symbols

where a(z, z) are polynomials in z, z.

For two vectors u, v of the form (5.5) define the scalar product

Writing a(z, z) in (5.5) in the normal form (first creation,
then annihilation operators) we see that non-zero vectors (5.5) are linear
combinations of

These define an orthonormal basis with respect to the scalar product (5.6).
The vector eo = p is called the vacuum. Thus, the Fock space F is the left
ideal of the symbol algebra ,S’ generated by the vacuum vector. To obtain
a Hilbert space, we need a completion with respect to the scalar product.
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We next define an action of the symbols from ,S’ and the group U(n)
on the space F 0 E. For a symbol b(z, z) the corresponding operator 6 is
given by the star-product in integral form

The group U(n) acts by pulling back the symbols (5.5) which represent
vectors in F that is

LEMMA 5.1. - The correspondence

possesses the following important properties:

1 ° The homomorphism property

2° The conjugation property

where the pull-back g* a is given by

Proof. Direct check. 0

Since W c S’ the operators 4 are defined for a E W. Moreover, the

conjugation (5.11) is trivial for a E W and g E G c U(n) because of the
equivariance relations. Note that the Weyl correspondence does not allow
a single-valued representation of the group U(n), that is why we need a

representation in the Fock space.

We are now in a position to define an orbifold trace on symbols a C W.

Namely, set

on the right-hand side meaning an operator restricted to the subspace
of G -invariant elements of 1F 0 E. For a finite group G, the orthogonal
projector to this subspace is given by the averaging

1
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and (5.12) thus becomes

The last expression makes sense for any rapidly decreasing symbol
from S, not necessarily invariant with respect to G -action (5.9). We will
use the notation Trg a = Tr ga for any rapidly decreasing symbol a C S.

LEMMA 5.2.

1 ° For any a E Wand any b E S,

2° For any a E W (not necessarily G -invariant)

In particular, for a G -invariant a E W it just amounts to a.

Proof. The first item follows from the evident chain of equalities

We have used that ~~~’~ = a since a E W satisfies the equivariance
relations, and changed cyclically the order of factors under the trace sign.

For the second item write

Next, we want to express the orbifold trace directly in terms of
the symbol and, moreover, to extend it to formal symbols. Using the
orthonormal basis (5.7) we obtain

The sum may be calculated explicitly (see [12])

provided det(1 + g) 54 0. Here T (g) means the action of G on the bundle E,
tr means the coefficient trace. This is an integral form of the trace formula.
To extend it to formal symbols, we first let h vary on (o,1~ and calculate the
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stationary phase expansion of the integral (5.16). To this end, decompose
(Cn into the direct sum of the fixed point subspace

and its orthogonal complement N(g). Writing z = (zl, z2), nl = 
n2 = dim N(g), and g = 1 on F(g) and 9 = g2 on N(g), we get

To calculate the inner integral, we expand a in a formal Taylor series at

z2 = 0, namely

and integrate this expansion termwise, thus obtaining

Here 8/ 8z2 means the row and 9/o9z* the column of
complex conjugate elements. Observe also that on N(g) the matrix 1 - g2
is non-degenerate.

Consider further the symplectic form

The measure dZ1 dZ1 including the factor (27rh )nl in the outer integral is
defined by the top degree of the non-homogeneous form

1. I-

In the final expression we denote (Zl, zl) by x, (z2, z2) by (z, z) and 92 by
gN . The trace formula reduces then to the so-called Weyl form

We now return to deformation quantization setting. By formal sym-
bols we mean here formal power series in h



1624

with coefficients ak belonging to W or to S. We will use notation W h or
S , respectively. We define Trg a by linearity treating the series (5.17) for
ak as a formal power series in h. Our previous construction via Fock space
representation serves only to prove the following lemma which is an analog
of Lemma 5.2 in the deformation context.

LEMMA 5.3. - The properties (5.14) and (5.15~ hold for any formal
symbols a E W h and b E Sh.

Proof. Since is defined on formal symbols by linearity, it is

sufficient to prove the lemma for a and b consisting of a single term only.
Hence we may assume that a is a symbol from W and b C S. By Lemma
5.2 the equalities (5.14) and (5.15) hold for any fixed h E (o,1~ . Thus, the
asymptotic series for both sides must coincide, hence the corresponding
formal series in both sides coincide as well. D

In the rest of this section the representation in the Fock space is not
needed any more. We will use only the definition of the Trg on the algebra
W h given by (5.17) and its properties (5.14) and (5.15). The definition
(5.13) for a local orbifold trace written in the form

makes sense now for any formal symbol a C W h .

Our aim is to globalize this definition. First, we show its independence
of linearization ,ft and its quantum lifting It given by (4.8).

LEMMA 5.4. - For any fixed a E W h and g E G, the functional

Trg Ita is independent of t.

Proof. The family It of automorphisms is defined by the Heisen-
berg equation (Lemma 4.4). The quantum Hamiltonian H is a formal sym-
bol from ,S’h . Applying Lemma 5.3, we get

proving the lemma.

Consider the case of two subordinate orbifold charts
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For a E and g E Go, the functional Trg a is independent of the
choice of the linearization, which is due to Lemma 5.4. Hence we may
assume that 01, so that w is inclusion, and the group Go is a subgroup
of Gel, mapping 6o to itself. Taking cosets rkGo, for k = 1,..., rrz, we obtain
non-intersecting subsets C Oi , their union

is a Gi -invariant subset of Õ1. By ao C W (Oo) we denote a Go -invariant
Weyl symbol with support in 60, a similar notation al C Wh(U) is used
for a G1 -invariant Weyl symbol with support in U. There is a bijection
between these symbols: for any a1 E W h (U) its restriction to Oo gives a
symbol ao E W_h (Oo ) . The inverse map is as follows: We first extend ao by
0 to the whole Oo, thus obtaining a formal symbol in Oo which is only Go -
invariant but not G1 -invariant. Keeping for this symbol the same notation
ao, define 

-

LEMMA 5.5. - The local trace Trorb is independent of orbifold
charts.

Proof. For the subordinate charts considered above we have

By Lemma 5.3,

for each k = 1, ... , m, so that the previous expression is equal to

But by virtue of the trace formula (5.17) non-zero summands may occur
only for g E Go since otherwise there are no fixed points of g on the support
of ao.
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A general case of two charts Oj and Ok with non-empty intersections
Oj may be reduced to the case of subordinate charts since the inter-

section may be covered by a finite number of orbifold charts subordinate
to both (5i and Of. 0

Now, to define the orbifold trace for a global quantum observable
a E Ah with compact support we use a partition of to

decompose a in a sum

and then take traces of each summand in a linearized orbifold chart

containing the support of pz, no matter which if there are many. More

precisely, let Ii : Ah -~ be the isomorphisms of Lemma 4.3, and let

Then we set by definition

This is actually the desired global trace functional since it vanishes
on commutators.

LEMMA 5.6. - The functional

possesses the trace property

where A~ C Ah means the ideal of compactly supported observables.

Proof. Using a partition of unity, we have
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The summation, of course, runs over those pairs i, j for which the
intersection Oi n OJ is non-empty. In the second and third lines the local
traces Trg are taken in the charts Oi while in the fourth line in Oj. 11

We are now going to transform the formula (5.18) to a more invariant
form. Note that the inner sum (over g E Gi) contains many equal
summands. Indeed, the integrals over F(g) and qF(g) are
the same because of Gi -invariance of the integrand. Thus, decomposing Gi
into a union of conjugacy classes and choosing a representative gk in each
conjugacy class (g,~ ) , we can rewrite the inner sum as

Here ( Gi ) denotes the set of conjugacy classes of Gi, gk runs over the
whole set of representatives, and denotes the number of elements in

the conjugacy class. We have dropped the integrand, it is the same as in

(5.18) with g replaced by gk. To calculate the number l(gk)1 ] observe that
the elements y1gk Y1 -1 and y2gk y2 -1 coincide if and only if commutes

with gk, that is belongs to the centralizer of gk in Gi. (Recall that the
centralizer ZG2 is a subgroup in Gi consisting of elements commuting
with gk ) . To obtain all distinct elements the element -y should run
over all representatives of left cosets Thus,

and the sum takes the form

The summands here may be interpreted as integrals over linearized charts
of some symplectic orbifolds. Indeed, ker(l - is a complex
space where the group ZG, (9k) acts by linear unitary transformations since
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Thus, introducing the notation F(gk) for the orbit space 
and for the corresponding projection, we come to a quadruple

which resembles an orbifold chart for some symplectic orbifold. In fact
there are many connected symplectic orbifolds of different dimensions (and
even for a given dimension there are many connected components) whose
orbifold charts form the set (5.21) with all possible 1~ and i. We will denote
these connected components by F1, F2,..., Fm and call them fixed point
orbifolds. To define these orbifolds completely, we need to indicate what
pairs from the set (5.21) should be glued. Each chart (5.21) is contained in
a chart 6i of the original orbifold B. If Oi n Oj = 0 then, clearly, there is
no gluing conditions for the charts Oi and F(gl) E Oj. Otherwise,
if O = Oi rl 0, we glue F(gk) E Oi and F(gl) E Oj if and only if

F(gk) n 0 - F(gl) nO. A connected component of the fixed point orbifold
consists of those charts from the set (5.21) which can be connected with
each other by a chain of pairwise glued charts (5.21).

The action of the centralizer on may be not effective,
that is the components Fk may have a multiplicity &#x3E; 1, even if
the multiplicity of the original orbifold B was equal to 1. Then by the
integration formula (3.4)

where the integrand ak is a differential form on F~ which in an orbifold
chart F(g) is defined by

This finishes the construction of the orbifold trace.

The following simple observation shows that the trace is not unique in
contrast to the smooth case. For any flat one-dimensional bundle E1 E El
the replacement of E by E ~ E1 does not change the algebra of quantum
observables (see Remark 4.2). On the other hand, local representations
Ti(g) will be changed according to (3.6). So, in the final formula (5.23) the
representation should be replaced by Ti (g) x2 (g) . In other words, we
have an action of the Picard group on the set of traces.

Summarizing, we arrive at the following theorem.
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THEOREM 5.7. - There exist trace functionals (5.19) on the

algebra Ah satisfying the trace property (5.20). The Picard group acts
on the set of traces by tensoring.

One of the components in (5.22) coincides with the original orbifold
B whose multiplicity is equal to 1 according to the assumption in Section 2.
This case corresponds to the conjugacy class (1) of the identity element in
any local group Gi, the centralizer is then the whole group Gi. For g = 1
the integrand (5.23) takes a more simple form

This gives us an integral over the principal stratum having the same
form as in the case of smooth manifold. The other components are even-

dimensional, and their dimension is at least by 2 less than the dimension
of B.

6. An index formula.

In this section we propose a conjecture for the index formula prompted
by the Kawasaki index theorem [13], the index theorem for deformation
quantization [9] and the G -index formula [12]. For the time being we have
a proof only in very particular cases, cf. [11]. We hope however to find a
complete proof.

Restricting ourselves to the simplest case of a compact orbifold B, we
define the index of the algebra of quantum observables Ah as Trorb 1.

Let us look at the integral over one of the fixed point orbifolds
Fr,.L in (5.22), (5.23). Assuming that the original coefficient bundle was
K = End(E) over B, one can recognize in this integral an expression for
the orbifold trace for a deformation quantization on with a coefficient

bundle K 0 W (N) where W (N) is the Weyl algebra in fibers of the normal
bundle N of Fm with the coefficient trace on W(N) equal to Trg. Treating
W(N) as the isomorphism bundle of the Fock bundle IF(N) and proceeding
by analogy with the index theorem for deformation quantization, cf. [9], we
come to the following conjecture
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Here chg means the character of the bundle E © F(N) with respect to 
In more detail,

To define the character of the Fock bundle, we introduce an Hermitian
connection aN on the normal bundle N and an associated connection on

IF(N) . If

is the connection form on N then we take the form

as the connection form on F(N). The normal ordering in the last expression
is very important, it implies that the vacuum is covariantly constant:

= 0. The curvature of this connection is

where RN means the curvature of the normal bundle N.

LEMMA 6.1. - The following formula holds

Proof. The differential form

is meaningful as an operator in the Fock space where h E (0,1] is a number.
Indeed, S is a polynomial in z, z, so the action (5.8) is well defined. Because
of the normal ordering this action is trivial on the vacuum vector, i. e.

,S’ * p = p. Thus, for a vector u = a(z, z) * p E F we have

Thus, we need to know the adjoint action of S on W, and because it is an
automorphism of W it is sufficient to know the action on generators zi, z2.
It may be calculated using the well-known formula
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Since R~ is quadratic in generators we have

the superscript i indicating the Z’-th coordinate, and similarly

If z denotes a column and z* a row, then it results in

where s denotes the matrix exp(RN /27r2). Now, by the definition of the
trace we get

The series (which in fact is a finite sum) under the integral sign may be
simplified as follows. First, the last factor p may be written in the first
place, because the integral is a trace for the Weyl algebra on C~, and then
may be omitted since p is a projector with respect to the * -product on W.
Further, for a polynomial f (z) the following formula is true

Finally, using the trace property of the integral, we may omit the last
remaining * -product, obtaining

so that the trace formula reduces to

Calculating this Gaussian integral, we come to (6.2).
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Thus, our conjecture takes the form
____ 1 p , , _ , ~ , B.

7. Examples.

The purpose of this section is to interpret an index theorem for
deformation quantization as an eigenvalue problem. In a particular case
we come to our index theorem for symplectic orbifolds.

Consider the symplectic space M = (C2 with the standard symplectic
form

and the Hamiltonian action of the group G = R with the Hamiltonian

where c &#x3E; 0 is a fixed number. The orbits are as follows
_ --1.f -

for t E R, and we can distinguish two different cases:

1) c = l;

2) c is a rational number, c ~ 1 (we take further c = 3).
Take a number A which is a non-critical value of the Hamiltonian,

that is A &#x3E; 0, and consider symplectic reduction at the level A in each of
the two cases.

For c = 1 the level set H = ~ is a sphere Mo = ,S’3 in (C2 and all the
orbits are periodic, so, taking t E R mod27r, we have a free action (7.3)
of the group G = U(1) _ S . The orbits are big circles, and we thus obtain
the Hopf fibration

whose base is a smooth manifold.

If c = 3 (this is our main example), the level set Mo is an ellipsoid
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Taking t E R mod 27r as in the previous case, we again obtain an action
(7.3) of the group G = U(l) on the level manifold. This time, however,
the action is only locally free. Indeed, each point of the type (0, Z2) with
IZ21 ] = V2A/3 is a fixed point of the action (7.3) with t = 0, ::i:27r 13. The
orbit space B = Mo/G is an orbifold, as we shall see soon.

Let us try now to give a quantum interpretation to the reduction
procedure. To this end, suppose first that our quantum observables are
operators depending on a positive parameter h and acting in some Hilbert
space E. Algebraically, the reduction procedure goes in two steps. First we
restrict ourselves to the subalgebra of invariant observables (let us denote
temporarily this subalgebra by A). In quantum case the invariance means
that a commutes with H - A

This implies that each eigenspace of H - A is invariant with respect to any
operator a E A. At the second step we consider the restriction ao of the

operator a E A to the zero eigenspace Eo of H - A. If the eigenspace is
non-trivial the restriction gives an operator ao in Eo. We obtain thus an

algebra Ao = A/ (H - A) of operators in the eigenspace Eo which may be
viewed as the reduced algebra of quantum observables. The multiplicity of
the zero eigenvalue (which is a positive integer number) is given by the
trace of the identity operator 1 E Ao

So, the eigenvalue problem may be reformulated in an equivalent way: for
a fixed A find admissible values of h E A c (o, 1~ for which the multiplicity
Tr 1 is non-zero and thus belongs to N.

In the deformation quantization framework we cannot pose an eigen-
value problem literally, since our algebra of quantum observables Ah on M
is not an operator algebra. Nevertheless we have good substitutes for the
corresponding notions allowing us to reformulate the eigenvalue problem,
so that it makes sense for deformation quantization. Namely, we replace
the algebra Ao by the algebra of flat sections Ah on the base manifold (or
orbifold) B and the multiplicity Tr 1 by the index of Ah . It is essential

that the index is a polynomial in 1/h, thus numerical values of h
may be substituted. We now propose the following version of the eigenvalue
problem in deformation quantization terms:

For a given A E R find h E (o,1~ for which the index P(1 /h) takes
positive integer values.
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Let us start with the simplest case c = 1. We compare two versions
of the eigenvalue problem, namely the traditional eigenvalue problem for
the quantum harmonic oscillator with the Weyl symbol

and the above deformation quantization version. In the sequel they will
be referred to as the traditional and deformation versions. Note that in

the former we consider h as a number while in the latter h is a formal

parameter.

The traditional spectrum may be found explicitly using the Fock space
representation. In fact, the complete set of eigenfunctions are obtained by
acting on the vacuum by creation operators

with the corresponding eigenvalues equal to

where 0, n2 &#x3E; 0 are integer numbers, cf. Fig. 1.

Fig. 1: c == 1

It follows that the Hamiltonian (7.8) has zero eigenvalue if and only
if the ratio m = A/h is a positive integer number, this number gives us
precisely the multiplicity of the eigenvalue.

The deformation version of the eigenvalue problem has the following
form. First calculate the index of the reduced algebra Ah on which

gives us an a priori multiplicity of the zero eigenvalue of the Hamiltonian

(7.8). This begins with the calculation of the reduced symplectic form c~g.
Recall that the latter is uniquely defined from the equality
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on the level manifold Mo, where i and p are inclusion and projection

Here Mo is the sphere and B is the orbit space of the

group action

that is the projective space CP~. The orbits may be parametrized by the
ratio ( == zl /z2 if z2 ~ 0, and by the inverse ratio if 0. Thus, the
symplectic form should be a d( A d(/2z. In polar coordinates

so that

Replacing on the sphere Mo, we find

On the other hand, using polar coordinates, we get

or, eliminating r2

Equating these two expressions gives us

Thus, the reduced form is

Integrating this form over B = CP , we obtain

According to our deformation version of the eigenvalue problem, the

spectrum is obtained by equating this ratio to positive integer numbers,
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the ratio itself being a multiplicity. We see that in this case both spectra,
traditional and deformation, coincide.

Consider now the second case c = 3. The Hamiltonian in this case is

Similarly to the case 1) the traditional spectrum may be calculated explic-
itly. The eigenfunctions are the same, namely

with the eigenvalues

where 0 and n2 &#x3E; 0 are integer numbers. Thus, the Hamiltonian (7.10)
has zero eigenvalue if the ratio A/h is equal to N + 2, for N = 0, 1, 2,...,
and the multiplicity of this eigenvalue is equal to the number of lattice
points on the line 3n2 = N, cf. Fig. 2.

Fig. 2: c = 3

It is convenient to consider three series: N = 3k, N = 3k + 1 and
N = 31~ + 2 where k == 0,1, .... The multiplicity of the zero eigenvalue is
equal to k + 1 for each of these series. Let us express the multiplicity as
the function of the ratio A/h for each series. If N = 3k then A/h - 2 = 3k,
and for the multiplicity + 1 we obtain

Similarly for the series N = 3k + 1 and N = 3k + 2 we find

and
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Thus, we have the following description of the traditional spectrum: h
belongs to the spectrum if one of the expressions A/3h - 1/3, A/3h,
A/3h -~- 1/3 takes a positive integer value.

Now, let us calculate the spectrum in deformation version. The zero
level set Mo is an ellipsoid

and the action of the group U ( 1 ) is

The orbifold charts for the orbit space are defined by two slices

and

The group (7.14) maps ,S’1 into itself for t = 0, ±27r/3, and the only element
which maps S2 into itself is identity. Thus, for the orbifold charts one can
take two discs 

-

with the standard action of Z3 by multiplication, and

The Picard group corresponds to the three different characters of the group
G1, namely,

Indeed, the kernel of X in (3.5) is trivial, so the Picard group coincides
with the group of characters of G1. It may be easily seen because our
"teardrop" orbifold is topologically a 2 -sphere which is smooth except one
conical point. If monodromies of a flat bundle around this conical point are
trivial then the bundle is trivial. Indeed, it has a non-vanishing flat section,
defined on the smooth part and having a limit at the conical point, since
there are no non-trivial monodromies.

The fixed point orbifolds Fk consist of the orbifold B = Mo/U(l)
itself corresponding to g = 1 in each chart, and a zero-dimensional

component Fo corresponding to non-trivial elements of the group G1 = Z3
in the orbifold chart 01, that is zl = 0.
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For a trivial bundle E the term ch E disappears, the term A(F) also
disappears since dim F  2. Thus for each of the three characters our index
formula takes the form

The integral term in the orbifold chart 01 reduces to

Now, for the additional term in the index formula is equal to
1 1 1 1 1

Similarly, for X-1 = g-1

and for x 1 = g

Thus, we see again that the deformation spectrum coincides with the
traditional one.
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