A spectral analysis of automorphic distributions and Poisson summation formulas
[Décomposition des distributions automorphes et formules de Poisson]
Annales de l'Institut Fourier, Tome 54 (2004) no. 5, pp. 1151-1196.

Les distributions automorphes sur d sont celles invariantes par l’action linéaire du groupe SL(d,). Un cas particulier est constitué par les peignes, qui sont en outre des mesures à support dans d : la décomposition d’un peigne en ses composantes homogènes se fait suivant la famille (𝔈 iλ d ) λ , des distributions d’Eisenstein, les coefficients étant donnés par une série de Dirichlet 𝒟(s). Les équations fonctionnelles du genre usuel (Hecke) relatives à 𝒟(s), peuvent se traduire en termes de l’invariance du peigne considéré par la transformation de Fourier, légèrement modifiée. Ceci conduit à une façon automatique d’associer des formules du genre de la formule de Poisson, ou de celle de Voronoï, aux formes modulaires, holomorphes ou non-holomorphes

Automorphic distributions are distributions on d , invariant under the linear action of the group SL(d,). Combs are characterized by the additional requirement of being measures supported in d : their decomposition into homogeneous components involves the family (𝔈 iλ d ) λ , of Eisenstein distributions, and the coefficients of the decomposition are given as Dirichlet series 𝒟(s). Functional equations of the usual (Hecke) kind relative to 𝒟(s) turn out to be equivalent to the invariance of the comb under some modification of the Fourier transformation. This leads to an automatic way to associate Poisson-like (or Voronoï-like) summation formulas to (holomorphic or non-holomorphic) modular forms

DOI : 10.5802/aif.2048
Classification : 11E45, 11M36, 46F99

Unterberger, André 1

1 Université de Reims, Mathématiques (UMR 6056), Moulin de la Housse, B.P.1039, 51687 REIMS Cedex 2 (France)
@article{AIF_2004__54_5_1151_0,
     author = {Unterberger, Andr\'e},
     title = {A spectral analysis of automorphic distributions and {Poisson} summation formulas},
     journal = {Annales de l'Institut Fourier},
     pages = {1151--1196},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {54},
     number = {5},
     year = {2004},
     doi = {10.5802/aif.2048},
     zbl = {1066.11040},
     mrnumber = {2127847},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2048/}
}
TY  - JOUR
AU  - Unterberger, André
TI  - A spectral analysis of automorphic distributions and Poisson summation formulas
JO  - Annales de l'Institut Fourier
PY  - 2004
SP  - 1151
EP  - 1196
VL  - 54
IS  - 5
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2048/
DO  - 10.5802/aif.2048
LA  - en
ID  - AIF_2004__54_5_1151_0
ER  - 
%0 Journal Article
%A Unterberger, André
%T A spectral analysis of automorphic distributions and Poisson summation formulas
%J Annales de l'Institut Fourier
%D 2004
%P 1151-1196
%V 54
%N 5
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.2048/
%R 10.5802/aif.2048
%G en
%F AIF_2004__54_5_1151_0
Unterberger, André. A spectral analysis of automorphic distributions and Poisson summation formulas. Annales de l'Institut Fourier, Tome 54 (2004) no. 5, pp. 1151-1196. doi : 10.5802/aif.2048. https://aif.centre-mersenne.org/articles/10.5802/aif.2048/

[1] D. Bump, Automorphic Forms and Representations, Cambridge Series in Adv. Math 55 (1996) | MR | Zbl

[2] H.M. Edwards, Riemann's zeta function, Aca. Press, 1974 | Zbl

[3] G.H. Hardy & E.M. Wright, An Introduction to the Theory of Numbers, fourth edition, Oxford Univ. Press, 1962 | MR | Zbl

[4] D.A. Hejhal, The Selberg trace formula and the Riemann zeta function, Duke Math. J 43 (1976) no.3 p. 441-482 | MR | Zbl

[5] H. Iwaniec, Introduction to the spectral theory of automorphic forms, Revista Matemática Iberoamericana, Madrid (1995) | MR | Zbl

[6] H. Iwaniec, Topics in Classical Automorphic Forms, Graduate Studies in Math 17, A.M.S., 1997 | MR | Zbl

[7] T. Kubota, Elementary Theory of Eisenstein Series, Kodansha Ltd, Tokyo, Halsted Press, 1973 | MR | Zbl

[8] P.D. Lax & R.S. Phillips, Scattering Theory for Automorphic Functions, Ann. Math. Studies 87, Princeton Univ.Press, 1976 | MR | Zbl

[9] W. Magnus, F. Oberhettinger & R.P. Soni, Formulas and theorems for the special functions of mathematical physics, 3rd edition, Springer-Verlag, 1966 | MR | Zbl

[10] A. Ogg, Modular Forms and Dirichlet Series, Benjamin Inc., 1969 | MR | Zbl

[11] A. Selberg, On the Estimation of Fourier Coefficients of Modular Forms, Proc. Symp. Pure Math 8 (1963) p. 1-15 | MR | Zbl

[12] A. Selberg, Old and new conjectures and results about a class of Dirichlet series, 1992 | Zbl

[13] J.P. Serre, Cours d'Arithmétique, Presses Univ. de France, 1970 | MR | Zbl

[14] G. Tenenbaum, Introduction à la théorie analytique et probabiliste des nombres, Cours spécialisés, Soc. Math. France, 1995 | MR | Zbl

[15] A. Terras, Harmonic analysis on symmetric spaces and applications. I., Springer-Verlag, 1985 | MR | Zbl

[16] A. Terras, Harmonic analysis on symmetric spaces and applications. II., Springer-Verlag, 1988 | MR | Zbl

[17] A. Unterberger, Quantization and non-holomorphic modular forms, Lecture Notes in Math 1742, Springer-Verlag, | MR | Zbl

[18] A. Unterberger, Automorphic pseudodifferential analysis and higher-level Weyl calculi, Progress in Math 209, Birkhäuser, 2002 | MR | Zbl

[19] G. Voronoï, Sur le développement, à l’aide des fonctions cylindriques, des sommes doubles f(pm 2 ,qmn+rn 2 ), 1904, p. 241-245 | JFM

Cité par Sources :