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A SPECTRAL ANALYSIS OF

AUTOMORPHIC DISTRIBUTIONS

AND POISSON SUMMATION FORMULAS

by André UNTERBERGER

1. Introduction.

The standard Poisson formula is the equation

valid for every function h in the Schwartz space S(JRd) of C°° functions
on R d, rapidly decreasing at infinity: the Fourier transformation ,~’ is

normalized as

A special case is the so-called identity of theta functions, in which t &#x3E; 0 is

otherwise arbitrary,

In this paper, we shall suggest a variety of identities very similar in

appearance to these two formulas. One of the, simplest such generalizations
of (1.3) is the following: let ~d,1 be the function on R~ characterized by
the equation 

- -

Keywords:Automorphic distributions - Summation formulas - Voronoi’s formula.
Math. classification: llE45 - 1IM36 - 46F99.
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For every integer n &#x3E; 1, let Sq2d (n) be the number of ways n can be
decomposed as the sum of squares of 2d integers (of any sign; the order is
taken into account). Setting, for m C ZdBfol,

and co = -1, one has for every t &#x3E; 0

One may generalize (1.1) instead. Let -4~ E S (II~d ) (less stringent
conditions, making the consideration of the function 4Jd,1 possible, suffice)
satisfy

where Jd_ 1 is the Bessel function so denoted. The function T extends as a
continuous function on the whole of R~, and the identity

holds.

The main features of the generalizations of Poisson’s formula we
have in mind are already apparent on this example. First, the coefficients
cm are no longer trivial: in the examples we shall discuss, they will

always be borrowed from the consideration of modular forms. Next, the
transformation V - W will not be the Fourier transformation any more:

instead, it will be the composition of the Fourier transformation by some
function - a product of Gamma factors - of the Euler operator

on Il~d (the extra constant makes E a formally self-adjoint operator on
£2 (JRd)). One has for instance, in the preceding example,

One of the main tools of the theory of modular forms is Hecke’s

theory, which starts with the consideration, in association with such a
form f, of a certain Dirichlet series (the L-function
of f ), the coefficients of which are taken from the Fourier expansion of f.
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In the case when f is a modular form for the full modular group ,S’L(2, Z),
the function D satisfies a functional equation: the product D* (s) of the
function D(s) by (27r)-Sf(s) is invariant, or changes to its negative, under
the symmetry s ~ 1~ - s, where the integer is the weight of f. This is a
characterization, which extends, if one substitutes for the Dirichlet series a
finite set of "twisted" versions thereof, to the case when the full modular
group is replaced by some congruence subgroup (cf. [1, p. 60] for Weil’s
so-called converse theorem). Similar species of functional equations hold
for the Dirichlet series associated with non-holomorphic modular forms:
however, in this case, the extra factor from D to D* (referred to, in general,
as the Archimedean factor) involves the product of two Gamma functions.

In the present paper, we interpret the function D in some specific
spectral-theoretic sense, substituting for the argument s the Euler operator
(1.9). The class of functions, or rather distributions, on which these Dirich-
let series operate, consists of combs, which are measures on R d supported
in Zd, automorphic in the sense that they are invariant under the linear
action of the group SL(d, Z): the best-known such example is of course the
Dirac comb, the sum of unit masses at the points of Z~B{0}. Considering
the image T of the Dirac comb under some operator immediately related
to D* (2iJrS) , one can reinterpret the functional equation of the Dirichlet
series D as being the invariance of T under the Fourier transformation.

It is convenient, since Dirichlet series in the Euler operator as an

argument preserve the class of combs, to set aside the Archimedean factor
of the function D*. We then end up with Poisson-like formulas such as

(1.8), in which the Archimedean factor appears, as an operator on the test-
function 03A6, in transformations such as (1.10). Some specially nice formulas,
closer to a generalization of the identity of theta functions (1.3), involve
the same (D on both sides of the equation: Section 5 of this paper is entirely
devoted to the construction of such functions.

Up to some point, the machinery in this paper could be considered as
being one step further down Hecke’s path from modular forms to Dirichlet
series: here, Dirichlet series with functional equations are transformed into
Poisson-like formulas. Let us stress that the second step is independent
from the first one, i.e. does not demand any understanding of the origin
of the Dirichlet series under consideration. As a consequence, the proper

general frame for these developments would probably be close to Selberg’s
class [12] of L-functions. Space and time limitations, as well as the point
of view that examples are usually more exciting than axiomatics, led us
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to our present choice of working, instead, with Dirichlet series built with
the help of (holomorphic or non-holomorphic) modular form theory; in
the non-holomorphic case (Prop. 4.2 and Theorem 4.7), we shall also have
to consider at some point an identity related to the so-called theory of
convolution L-functions.

In a short conclusion, at the end of this paper, we shall refer to

some other types of formulas known as non-Euclidean Poisson formulas,
which bear no relation to the ones discussed here. On the other hand,
a special case (cf. Proposition 3.2) of the present Poisson formulas has
been known for a century as the Voronoi identity: it is the starting point
of most investigations on Gauss’s circle problem. Finally, but we shall
leave this to the conclusion too, we want to call the reader’s attention
to the general concept of automorphic distributions: this is an approach
to modular form theory with some advantages, which made possible, in
particular, the development [18] of automorphic pseudodifferential analysis.

2. Combs and Euler’s operator.

DEFINITION 2.1. - Let d = 1, 2,.... A distribution on R d will be
said to be automorphic if it is invariant under the linear action on R d of
the group SL(d, Z). A comb on R d is any measure 6 supported in ~dB~0~,
at the same time an automorphic distribution: in the case when d = 1, it
is also assumed that it is even, i.e. that it vanishes when applied to odd
.functions.

LEMMA 2.2. z If d &#x3E; 2, SL(d, Z) acts transitively on the set of
(column) vectors (m1 ~ ~ ~ md)T E urith a fixed (m1, ... , md) (the
positive g.c.d. of all coordinates ml, ... , md)’

Proof. Let r = (ml , ... , md ) : in the case when d = 2, let a and
c E Z satisfy am2 - cml = r: then

If d &#x3E; 3, set q - (ml, ... , I Md- 1), so that r. By induction, we

may assume that there exists some matrix B C SL(d - 1, Z) such that
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then, with C E SL(2, Z) such that (q md)T = C(r r)T, one has

and, witch 1

Notation. - If m E r(m) will always denote the g.c.d. of
the coordinates of m.

Thus combs in R dare just measures of the kind

where a = (al , ... , ar, ... ) is any sequence of complex numbers: in most
cases, we shall have to add to such a comb a constant plus a multiple of
the unit mass at 0, which will of course not destroy the invariance under
the action of SL(d, Z). In the case 1 for all r, we get the Dirac
comb

and in the case when al = 1 but aT = 0 for r &#x3E; 2, we get the comb

The distribution 6 a is tempered if and only if is bounded by
some power of r for r &#x3E; 2. In order to decompose tempered combs into
their homogeneous components, we introduce the Eisenstein distributions.
First, define the Euler operator E on IEgd by the equation ( 1.9) . If a function
h lies in one sets

for every t &#x3E; 0 and, for every tempered distribution 6,
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A tempered distribution 6 is homogeneous of degree
9 v if and only if t Since the operator E is formally self-
adjoint on L2(JRd), we are specially interested in distributions homogeneous
of degree

DEFINITION 2.3. - define the Eisenstein

distribution by the equation, valid for every h E S(R d),

It is immediate (but we shall prove more in a moment) that the
integral converges if Re v  - ~, so that Cj is well defined as a tempered
distribution (not a comb, of course) as soon as Re v  - 2 . Obviously,
it is SL(d, Z)-invariant as a distribution, also an even distribution (i.e. it

vanishes on odd functions), finally it is homogeneous of degree -v - 2 . In
the two-dimensional case, the relation between this notion and the classical

one of non-holomorphic Eisenstein series can be found in [18, p. 18-20].
Before we analyze the convergence in more detail, it is necessary to

introduce a class of functions with a very specific behaviour, as will

not do for our purpose.

DEFINITION 2.4. - Let E &#x3E; 0 be given: we shall say that a function
h on R d lies in the (Banach) space C, if it is continuous and satisfies for
all large lxl the estimate h(x) = and if, moreover, the same
condition holds for in place of h. We shall say that h lies in the space

besides, the function S3 h, associated with the operation of taking
the derivative in the radial direction only, lies in C, for every j = 0, l, ...

THEOREM 2.5. - As a tempered distribution, Q~d extends as a
meromorphic function of v E C, whose only poles are at v d: these
poles are simple, and the residues of Cj there are given as follows:

the unit mass at the origin of Let F be the Fourier transformation on

S’(R d), where the Fourier transformation on is normalized as
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In the case when extends as a

continuous linear functional on the space C~ .

Proof. We concentrate on the proof of the second part, which will
entail that of the first one as well. Since

with i a convergent integral if 4 &#x3E; Re v &#x3E;

- 2 - E, the distribution ~~ extends as a continuous linear form on C,
provided that - Introducing the decomposition

with

and

it is immediate that the second of these two expressions extends as a

holomorphic function of v in the half-plane Re v &#x3E; - 2 - ~ if h lies in

C~ . On the other hand, if - , one has
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This equation yields the extension, as a linear form on Ce , of (Cj)prjnc in
the half-plane Rev  2 ~ ~, thus completing the proof: note the use of
Poisson’s formula in the middle. D

Combs often decompose as integral superpositions of Eisenstein dis-
tributions, for instance :

the proof being the same as the one given in [17, ( 16.2) , (16.57)] in the case
when,d = 2: these are also particular cases of Proposition 2.6 to follow.
Note that I , so that (2.18) reduces when
d- 1 to

of course, when d does not vanish on the real line.

Remark. - Let II II and IIIIII be two Euclidean norms on Redefined
by quadratic forms of discriminant 1, dual of each other with respect to
the canonical bilinear form. Setting, when Re s &#x3E; d,

one remarks that, for Rev  2013~ the distribution Cj coincides when
tested against functions depending only on the of the variable
with the function LI. As a consequence of

Theorem 2.5, the II) extends as a meromorphic function
in the complex plane, with a simple pole at s = d with residue 7r~ /f(~).
Next, in view of the equation (5.5) expressing the Fourier transform of the

the equation 0f, = C~ , , shows that the function
coincides with (, This

may be considered as a proof of the functional equation of the Epstein (in
particular, Riemann!) zeta function slightly different from the more usual
ones but of course, like all such proofs, it relies on the use of the Poisson
formula, which occurs in the middle of the sequence (2.17).

The two integral decompositions (2.18) are meant in the weak sense
in However, it is well-known [2, 14] that, for u ) 1, the function

(((cr2013zA))~ is bounded, for large JAI, by some power of 1 ~- ~ then, these
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decompositions can also be applied when tested against any function h in
some space Clool as introduced in Definition 2.4.

More generally, the decomposition of any tempered comb will involve
a Dirichlet series: we set, with the notation introduced just after (2.5),

a convergent series if Re s is large. For the applications we have in mind,
we shall always be dealing with functions Da with the following properties:
such a function will extend as a meromorphic function in the wholes complex
plane, with only a finite number of poles; next, for every compact interval

[a,,8], there will exist some c &#x3E; 0 and C &#x3E; 0, finally some to &#x3E; 1 such that

C I Im s I c whenever a x and to. We shall say
that Da has at most a polynomial increase on vertical strips when we need
to refer to this latter property: it will hold in all cases to be considered

here, where the Dirichlet series to be dealt with originate from modular
form theory.

Besides the function Da, we shall have to consider also the function
Db linked to it by the equation ~ ~S~ . Recall [3, p. 236J that it
is indeed (when Re s is large) the sum of a Dirichlet series, namely that
associated with the sequence b linked to a by the pair of (equivalent)
formulas

in which p is the Mobius indicator function (~ (m) - (-l)j if m is the

product of j distinct prime factors, and ~(~) = 0 if m is not squarefree). It
amounts to the same to assume that Da, or Db, has at most a polynomial
increase on vertical strips.

PROPOSITION 2.6. - Assume that the sequence a = has

at most polynomial increase, and that the function Da has at most a
polynomial increase on vertical strips. Let b be the sequence linked to
a by (2.22) or, equivalently, by the equation Db(s) = that

the function Db extends as a meromorphic function in the plane, with no
pole with a real except, possibly, the point s = d. Then the comb
6a introduced in (2.5) admits the vveak decomposition in 
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The right-hand side of the equation that precedes still makes sense
when tested against any function h lying in some space as introduced

in Definition 2.4. By convention, we shall also set

whenever h satisfies the condition just indicated, defining in this way the
unique extension of the measure 6a as a continuous linear form on the
space 

Proof. The convergence of the integral comes from the fact that

arbitrary powers of A can be compensated since arbitrary powers of the
Euler operator are applicable to the test function in 5 (JRd); also, the
Dirichlet series Db (s), has at most a polynomial increase on vertical lines.

If h E S(1Rd), its decomposition into homogeneous components of

degree - 4 - iA is given as

One can also define, for p E C with 1m J-l &#x3E; 0, the function h-, by the
same formula, leading for all b &#x3E; 0 and x =1= 0 to

Now, it is immediate from (2.10) and (2.26) that, if Im p &#x3E; ~, one has

also, from the definitions (2.7) and (2.5), that

and
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Then, starting from

we only have to apply the residue theorem, moving the line of integration
ib + R to R, and taking into account the residue at the pole s = d which,
whether it is a pole of Db or not, arises anyway as a pole 

2

Note that, if d is not a pole of Db, the corresponding special term in
the decomposition (2.23) reduces to 

That the right-hand side still makes sense when h, instead of lying
in only satisfies the less demanding conditions stated at the end of
the theorem, is a consequence of Theorem 2.5. D

Aside from the special case of the distribution 0 + 27r6, combs
are generally not transformed into combs by the Fourier transformation.
However, this may happen if the Fourier transformation ~’ is replaced by
some modification just as nice in all aspects not involving the additive
group structure of Zd, only the structure of RdBf 01 as a homogeneous space
of SL(d, Z): here, d denotes the dimension as before, and the weight w, to
be borrowed later from the consideration of some modular form, is assumed,
for the time being, to be just some real number &#x3E; 1/2.

Set, in the spectral-theoretic sense,

where the second equation is to be found in [9, p. 91]: in other words, for
every h E and x E one sets

which makes a C’ function on The following is an immedi-
ate consequence of the spectral definition (2.32) of and of the equation

PROPOSITION 2.7. - The operator 
extends as a unitary operator on and one may also write =

lJ’ just like F2, is the symmetry operator 6 - 6.
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The transformation .~’d, 2 is especially easy to analyze on radial

functions: 

PROPOSITION 2.8. - Let ~ ( ~ ~ be two Euclidean norms

on R d defined by quadratic forms of discriminant 1, dual of each other
with respect to the canonical pairing (, ). If ( one has

Proof. Rewriting (2.32) as

we see that, if one has

On the other hand, one has the well-known formula (radial Fourier trans-
formation)

We need to study pairs of functions (D, T linked by the more general
Fd,w-transform in some detail: this transformation does not preserve the
space 

LEMMA 2.9. - and T be two radial functions on set

4l(r) = w(x) == Assume that (D and T lie in the space

CE introduced in Definition 2.4 : recall that this means that (D and Ware
continuous on JRd, are both at infinity, and that the same holds
for the Fourier transforms of 4) and w. Assume that, for some real number

and Ware linked by the equation

a pair of convergent integrals. and extend as meromorphic
functions throughout the strip 20136-Re5d+~ without any poles
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except possibly at s = 0: this pole can only be simple, with residues 
and ~~ respectively. On the other hand, Y~ and V vanish at s = d (in
other words, Finally, these two functions
are linked b,y the functional equation

and one has

If V G S(JRd), is radial and satisfies , the function

~ defined as ’~ for every E such that 0  E  

Proof. The hypotheses are symmetric - except for the last sen-
tence - with respect to the pair lll, W . Since the Fourier transforms of these
functions are as x ~ - and T have some Holder regularity:
in particular there exists some C &#x3E; 0 such that

Writing, when 0  Re s  d + E,

one finds the meromorphic continuation of V4, in the strip indicated, as well
as its residue at 0. The decomposition into homogeneous terms

of a radial function only involves functions of the type

the scalar function has been systematically computed, for certain
special functions 4D, in Section 5. According to (2.26) (or (5.2)), one has

so that
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when Re s = 2 . In Lemma 5.3, the following is established:

The first part of the present lemma follows, since the equation (2.39) can
be derived from the functional equation (2.38), itself a consequence of the
last equation.

For the second part, that starts with a rather general function
so that

extends as a holomorphic function to complex values of A in the domain

Re(iA) &#x3E; - 2 -1, as it follows from the assumption that (0W) (0) = 0; also,
when Im A is kept fixed within the half-line just introduced, this function
is rapidly decreasing as a function of the real part of A as IÀI - oo. Then,
we write, using (2.46) and the last formula of Lemma 5.1,

and

So far as the integral defining 03C8 (x) is concerned, we can use a deformation
of contour, substituting iA + M for iA with M &#x3E; 0 arbitrarily large,
ending up with the fact that w(x) is rapidly decreasing as Ixl -~ oo.

Something similar works for (.~~) (x): only, we are constrained by the
condition M  2 -~- w-1 in view of what has been said above regarding
the complex continuation of the function ~). D

An especially nice pair satisfying the assumptions of Lemma 2.9 is
the pair, for which 03A6 = 03C8, denoted as and introduced in Proposition
5.4. It may be thought of as playing, with respect to the transformation

essentially the canonical role played by the Gaussian function x ~

exp( -7rlxI2) with respect to the usual Fourier transformation. When w &#x3E; 2 ,
this function lies in the space In the case when w = 1 (the only
case in which we have completed the calculations), one can also use the
pair provided by Lemma 5.6: the relationship of the sequence



1165

(4S§,~ ) j &#x3E;o to the function can be compared to that of the sequence of
Hermite (radial) functions to the Gaussian function.

3. Combs and holomorphic modular forms.

We now connect the question of the construction of 0d,w-invariant
combs to holomorpllic modular form theory, relying on the first result of
Hecke’s theory as explained in section 1 of [10]. The starting point of the
construction is a modular form of weight wd, where w is an integer &#x3E; 1.

THEOREM 3.1. - Let f be a modular form of weight wd, with
w = 1, 2, ..., for the group G(2) of fractional-linear transformations of the
upper half-plane generated by the translation z F--~ z + 2 and the inversion
z F--+ - -1. More precisely, assume that f admits the Fourier expansion

where the sequence ( fn) is bounded for large n by some power of n, and
that f satisfies the equation

with r, - ±1. Let (D and T be two radial functions on R d related by the
and lying in the space for some £ &#x3E; 0. For every

m E Zd, set

and co = - fo . Then, for every t &#x3E; 0, one has

where each of the two sides should be ascribed the meaning defined
in (2.24).

Proof. Recall that
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when Re s is large, and set

According to [10], the function

extends as an entire function, bounded in vertical strips, which implies first
that fo = and satisfies the functional equation

We then set, for r = 1, 2, ...,
if r = n’*’ for some n &#x3E; 1,
otherwise,

and consider the function

It follows from [10, 1-5] that the function Db is meromorphic in the
whole plane, with only one simple pole at d, with residue , and

satisfies the equation

Next, recall from Theorem 2.5 that the distribution-valued function
s has a simple pole at s = d with residue 1 (the Lebesgue measure

2 -S

of Rd). From (2.15)-(2.17) we find the next term in the expansion 
2

near s = d, namely

We may, a priori, need a second term as explained since we must consider
the residue, at s = d, of the product where the first factor also

2

has a simple pole at d: that the measure on the right-hand side of the last
equation extends as a continuous linear form on the space of functions C~
is, however, sufficient for our purpose.

Setting a = with we shall consider the

automorphic distribution
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and show that it transforms to rTa under the modified Fourier transfor-
mation 

This is a consequence of (2.23),

applying first the fact transforms to ~~i)’" under the usual Fourier
transformation (Theorem 2.5), next that Fd,w = together with the
spectral definition (2.32) of fid,w, one finds

which is the same as in view of the functional equation ( 3.11 ) .
We now test the distribution identity just established against the

function defined as

The Fd,w-transform of this function is the function

indeed, the Euler operator E commutes with the operator introduced

in (2.32), so that it anticommutes with just as it does with the usual
Fourier transformation. Thus

The computation of the second term from the decomposition of

(Ta, ~t) that arises from (3.13) can be obtained as an application of (2.28),
which gives if -~  Re s  d + E the equation

Note that

vanishes at s = d according to Lemma 2.9. One has, for Re s &#x3E; d,
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as defined in (2.20), and it has been recalled in the remark that follows the
proof of Theorem 2.5 that this function has a unique pole at s = d and
that this pole is simple, with the residue Jri /F( f ) .

From (3.19) and (2.39) (which gives the derivative of at s = d

in terms of the value of W at 0, whereas Y~ (d) - 0), one then finds that
the function ( ~ d _ s , I&#x3E;t) is regular at s = d with the value

2 -S

from which it is immediate (using a result stated immediately before (3.11 ) )
that

Thus

so that (3.17) yields

This completes the proof of Theorem 3.1. D

Remarks.

(i) In some sense, Theorem 3.1 can also be understood as follows. Let
~ = 6c 2013 2Jr fo6, an automorphic measure supported by Z : the image of 91
under the operator ~r-~’~ 2 -2i~~) r (w ( 2 - 2i~rE) ) is multiplied by K under the
Fourier transformation. However, we found it preferable to let the Gamma-
like function of the Euler operator act on the test function rather than the
discrete measure for the following two reasons: appropriate spaces of test
functions are easier to define in this way (cf. Lemma 2.9); also, the role of
combs (which carry all the arithmetic of the situation, the extra operator
under study being just the Archimedean factor which usually appears in
functional equations) is more immediately apparent.

(ii) The assumption that W is radial is far from necessary, and should
be considered as purely technical. Indeed, nothing would be changed if

another Euclidean norm were substituted for the standard one: only, in
Lemma 2.9, if I one should set 1 where

the two Euclidean norms I I I I I are defined by quadratic forms of
discriminant one and dual to each other in the sense of Proposition 2.8.

Consequently, integral superpositions of functions ~, radial with respect
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to various Euclidean norms, should be equally possible. The sole difficulty
stems from the fact that the regularity assumptions to be made are more
difficult to state in general than in the radial case: in particular, if ellipsoids
with large radii become very flattened, the approximation (by the volume)
of the number of points with integral coordinates within fails to hold in a
uniform way.

One of the simplest examples is obtained if we start from the modular

form [10, 1-42]

in which Sq2d (n) is the number of ways the number n can be decomposed
as the sum of squares of 2d integers (of any sign; the order is taken into
account): the associated L-function is

and the conditions of the preceding theorem relative to the modular form f
are satisfied with w = 1 and K = 1. On the other hand, we choose (D = 
as defined in Proposition 5.5, ending up with the Poisson-like formula shown
in the introduction (1.4), (1.6). One can do the same with w = 2, 3, ...,
substituting the coefficients for the coefficients above, in which
case the Fd,w,-invariant function computed in Proposition 5.4, is an

explicit generalized hypergeometric series.

In the one-dimensional case, consider more generally the Dirichlet L-
function L(s, X) associated with an even, primitive character modulo N.
Set [1, p. 4]

so that for r &#x3E; 1, the Dirichlet series Db (s) -
are linked by the functional

The argument that precedes then shows that, for every
equation
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holds: in loc.cit., p. 8, this twisted Poisson summation formula is proved in
an independent way, then applied towards a derivation of (3.28).

Theorem 3.1 can be used in particular in the one-dimensional case,
and associates a summation formula of the Poisson style to each modular
form of weight w = 1, 2,... for the group G(2). However, there is another
possibility in this case. Using the already mentioned fact that, in dimension

and the link between Da and Db
recalled in Proposition 2.6, one can write

With Ta still defined by (3.13), the equation (3.14) can now be written as

We may then assume that it is Da, not Db, that satisfies the functional

equation (3.11), with d = w = 1. Granted that we have not strived for the
weakest assumptions regarding the function -4~, we here essentially recover
a well-known result of Voronoi [19] (see also [4]), who considered the case
when 4D is the characteristic function of [0, 1]. Note that the existence
of pairs (~, E) of functions satisfying the hypotheses of the proposition
that follows is easily ascertained: it suffices for instance to start from

4~,(x) = (I - x2 ) + 1, with a &#x3E; 2, using the Lemmas 5.2 and 5.3 together
with some contour deformation.

PROPOSITION 3.2. - Let 4) and u be two even functions on the

real line, in the space for some E &#x3E; 0, linked by the equation 
WItI2 as defined in (2.32). Then, for every t &#x3E; 0,

one has

Proof. Set an = Sq2 (n) for every n &#x3E;, 1: this is the sequence
of Fourier coefficients of the function
(unique, up to multiplication by a constant) modular form of weight 1 for
the group G(2). The associated Dirichlet series Da verifies the equation
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From (2.32), one has

so that, starting from (3.31) and using (5.5), one finds

or, using (3.33),

thus = Ta. With the same notation as in the proof of Theorem 3.1,
we now have the functional equation

a consequence of (3.19) and (5.11). It follows, using also the equation (2.41)

as recalled in (3.7) and so that Db ( 1 ) _ 7r and, using also

from which the proposition follows.

Starting from (3.34) and using [9, pp. 3,91], one may write

which can be put into a more classical form: for x &#x3E; 0, one has
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where we have used [9, p. 405]; one thus recovers the expression given in
[4, p. 449]. 0

Our last example in this section may be introduced by the consider-
ation, in the case when d = 7,11, ..., of the holomorphic Eisenstein series

one has the following expansion [13, p. 150]:

with

and, for r &#x3E; 1,

THEOREM 3.3. - Assume d = 4q + 3 with q - 0,1,... and set
Let 4) be a radial function in the space S(JRd), orthogonal

in the space L2 (JRd) to the functions
Let be the function defined as

For every t &#x3E; 0, one has the relation

Proof. Starting just as in (2.31), we set [3, p. 250]
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so that

In our present case, the second term on the right-hand side of (2.24) reduces
since d &#x3E; 2 to

now, given 03A6 and 03C8, where 03A6 is a radial function in the space linked

by (3.45), there is the same link between the functions x H 
and x H IQ t (x) - Applying the equation just obtained with h
replaced by 4bt or Wt, we observe that the right-hand sides will coincide as
a consequence of the functional equation of the zeta function

-- _ 

y ‘4 ~ 2 ~ 
-- -

the argument is just the same as the one used in the proof of Theorem
3.1. What remains to be done so as to complete the proof of Theorem 3.3
is analyzing the transform in (3.45), in particular getting a link between
~ 1, I» (or ~ (1, w) as a consequence: this is done in the

next lemma. D

LEMMA 3.4. - Under the assumptions of Theorem 3.3 relative to
the dimension d and to the radial function -D E the function T

linked to 4D by (3.45) is continuous throughout Jaed, rapidly decreasing at
infinity, and satisfies the equation

as well as the same equation in which the roles of (D exchanged.

Proof. From Lemma 5.1 and (3.45), we get

and, from (5.1),
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As already noted in (2.44), one has

if ~ (x) _ now the Taylor expansion of 0(t) near t = 0 only involves
even-order terms and makes it possible to show that spec(~; iz) extends as
a meromorphic function in the complex plane, with only simple poles at

z = 2 ~ 2j, j = 0,1,.... These poles correspond to poles of r( 4 - ~) so
that, using also the fact that iz) is rapidly decreasing as a function
of Im z, one sees by a contour deformation z that W(r)
is rapidly decreasing as a function of x for large lxl. For Ixl (  1, we must
on the contrary perform the change of contour z H z - 2 - 21~ - 2 , thus
coming across the simple poles ; &#x3E;

(.~ = 0,1, ...) of the integrand of (3.53). Each pole of the first type will
then contribute a term in Ixl2j, but a pole of the second type would
contribute a term in Ixl-~+~+2£ discontinuous at the origin for £ == 0, ... , q
unless the conditions i ( 2 + 2£)) = 0 are satisfied in this range of
values of .~: now, from (3.54), such a set of conditions can be expressed as

which is just the assumption made in the statement of Theorem 3.3.

Computing a residue at z = - 2 , we easily get

4. Combs and non-holomorphic modular forms.

Non-holomorphic modular forms f also give rise to a generalization
of the Poisson summation formula, analogous to that developed in the
preceding section. There are, however, two major differences, which we
shall briefly report to start with. Again, everything will be centered on
the functional equation satisfied by the associated L-function. In the non-
holomorphic case, the Archimedean factor making such an equation valid
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involves the product of two Gamma factors. As a consequence, the modified
Fourier transformation V - W taking the place of the one which appeared
in Lemma 2.9 or in (3.45) will have twice as many Gamma factors, as in
(4.31) or (4.58). Another difference is more fundamental: if one goes back
to (2.23), one will remember that it was essential, so as to obtain Theorem
3.1, to construct a Dirichlet series Db with a functional equation (3.11)
concerned with the symmetry s H d - s: the way we were able, in the

holomorphic case, to manage this was to appeal to a modular weight of a

high level (a multiple of d). No such trick is available any more in the non-
holomorphic case: instead, we shall make use of a certain expression (4.28)
of the tensor product This will force us to understand

in a deeper way, in the proof of Proposition 4.2, the action on combs of
Dirichlet series in the Euler operator. Then, the coefficients, in Theorem
4.7, of the generalized Poisson formula built in this way will no longer be
read directly from the Fourier coefficients of the non-holomorphic modular
form f, but will involve the value, at the symmetry point s = 2 , of a
slightly generalized version of the L-function L(s, f ). In another version
(Proposition 4.8), more closely related to the method used in the proof of
Theorem 3.2, the coefficients of the Poisson formula will be quite simple,
but this version is only available in dimension 1.

For simplicity, we shall consider only non-holomorphic (Maass) mod-
ular forms for the group T = SL(2, Z): these are functions f on the upper
half-plane II, r-invariant for the usual fractional-linear action of h on II,
at the same time generalized eigenfunctions of the hyperbolic Laplacian

on II. A Maass cusp-form is a non-holomorphic modular form which lies in
the Hilbert space L2(fBII): this is the space of F-invariant functions on II,
the restriction of which to any fundamental domain for the action of F

on II is square-integrable. The theory of non-holomorphic modular forms,
another name for which is the spectral theory of the modular Laplacian, is
developed in many places, including [7, 15, 5, 1].

Even though explicit examples of Maass cusp-forms. are known only
for some (congruence) subgroups of F distinct from r, it is very well

known that the discrete spectrum of A in (i. e. the set of genuine
2

eigenvalues of A) constitutes a sequence (1+k2)/4 with oo: we are only
interested in even cusp-forms, i.e. cusp-forms invariant under the symmetry
z H -z. Recall [15, p. 208] that, as shown by a simple separation of
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variables, any cusp-form f admits a Fourier expansion (with respect to
x) of the kind

if f is even, which we assume from now on, one has f-r = for all r.

A fundamental concept, in relation with cusp forms, is that of L-

function : the L-function associated with f is the Dirichlet series

it is convergent when Re s is large and admits a continuation [1, p. 106]
as an entire function satisfying some functional equation of the usual type:
setting

this is again an entire function and one has (if f is an even cusp-form)

We need a slight extension of this notion:

LEMMA 4.1. - Given an even cusp-form f with the Fourier expan-
sion (4.2), and an integer n &#x3E;, 1, the function

with

extends as an entire function of s.

Proof. We show that

First, each integral on the right-hand side converges for all s: indeed, for

large y, f (x + iy) is rapidly decreasing as shown by the expansion (4.2);
next, in the case when q = 0, the automorphy condition j
takes care of the integrand near y = 0. Finally, to estimate + iy) when
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0 and y is small, we set q = a(q, n), n = c(q, n), complete the pair a, c
to a matrix (a 1) E 5T(2, Z), so that an - cq = 0, bn - dq # 0 and

a point in the upper half-plane congruent to n + iy, with an imaginary part
that goes to oo as y -+ 0 just like 

Next, we compute the right-hand side of (4.8) under the assumption
that Re s is large. Starting from (4.2), we find

a number which is 1 if 0 otherwise. The proof is concluded, just as for
’ the usual L-function, by the use of the equation [9, p. 91]

The construction that follows associates a comb with a Poisson-style
equations to any non-holomorphic cusp-form f under the condition that

L( 2 , f ) 7~ 0. One may note that the same non-vanishing condition occurs
in [17, theorem 15.2], so that the values 1-2~‘k of interest are exactly the
poles with real value 2 of the continuation to the half-plane Re s &#x3E; 0 of

the Dirichlet series

(the other poles of this function in the given half-plane are just the numbers
2 with p a non-trivial zero of the zeta function). Let us remind the reader
that nothing is known, at present, about the arithmetic nature of the

sequence (Ak) -

Maass even cusp-forms corresponding to some given eigenvalue 2013~
constitute a finite-dimensional vector space with a basis consisting of
Maass-Hecke forms, also called Maass eigenforms, with especially nice
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properties ( ~1, p. 119] or [15, p. 241]): they are not only eigenfunctions of A,
but also joint eigenfunctions of the sequence of Hecke operators
(loc.cit.). It is useful (and customary) to normalize Maass-Hecke forms by
the requirement that the first coefficient fi in their Fourier expansion (4.2)
should be fi = 1: in this way, the L-function of f has the Eulerian product

When dealing with Maass-Hecke forms, we shall always assume that the
normalization above has been chosen.

We start with the following analogue of Proposition 2.6.

PROPOSITION 4.2. - Let d = 1, 2,... and let f be a Maass-Hecke
cusp-form for the group F. Set, for r &#x3E; 1,

where a, (n) always denotes the sum of all positive divisors of n taken to
the power p, and consider the comb as defined in (2.5). It is a tempered
distribution, and admits the following weak decomposition in S’ (IRd):

r ,, r,r, - I

Proof. Dirichlet series in 2i7r£ the coefficients of which constitute

a slowly increasing sequence transform (tempered) combs into (tempered)
combs, for

with

Indeed, given h E one has
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For instance, every tempered comb 6a is the image of Zprime (cf. (2.7))
under the Dirichlet series : it is also the image under
some appropriate Dirichlet series in 2iJrS of the Dirac comb itself, as it

follows from the Mobius formula (2.22). Note (applying (2.10)) the relation
between tempered distributions, valid, for a given sequence (7(n)), if - Re v
is large enough,

this is more easily remembered as the rule of thumb that the operator 2inE
acts on Cj like the multiplication by -v, a reminder of the fact that the
distribution Cj is homogeneous of 

Introduce, for Re s large, the following operator:

This becomes a Dirichlet series in the argument 2i7r£ after resummation:

with

as a consequence of which it operates on combs: if

has, according to (4.19),

By Lemma 4.1, viewed for each s as an operator on temperate
combs, extends as an entire function of s: we are especially interested in
the value s - 1. We shall apply what precedes with c(r) - ad-2 (r), in2 2

which case as defined in (4.15), and [3, p. 250]
2

for Re s &#x3E; Then, from Proposition 2.6, next Theorem 2.5,
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Now, if v, and v2 c C are such that v2 has a large real part,
one has the equation [17, p. 140]

this equation, easily proved by an application of the Eulerian product
(4.14), really belongs to the theory of so-called convolution L-functions
( ~1, p. 73] or [6, p. 231], though in these two places it is, rather, the case
of a convolution L-function associated with a pair of holomorphic modular
forms that is considered). From this, together with (4.20) and the fact that
the operator 2inE acts on constants like the multiplication by ) , it follows
that, when Re s is large,

which yields the spectral decomposition

a detailed proof of which would follow the lines of that of Proposition 2.6.

Taking the complex continuation with respect to s, we obtain Propo-
sition 4.2 as the case s = 2 of the last equation. Concerning the convergence
of the integral with respect to A involved, what was said at the beginning
of the proof of Proposition 2.6 still applies. 0

So that the integral term from the spectral decomposition (4.16)
should remain invariant under the operator to be introduced now,
we rely again on the equation ~

, ’v

together with (4.5), expressed
as the invariance under A H -a of the function

and set

a definition to be compared to the definition of Fd,w == with 

as introduced in (2.32): recall from the introduction to the present section,
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however, the reason for the larger number of Gamma factors appearing
now.

The space or its subspace consisting of radial functions, is not
invariant under the operator ’Hd,Àk. There is a larger space that is, but of
necessity it has to depend on Ak, which may give a somewhat technical
appearance to the definition that follows. Until we come to Theorem 4.7,
Ak could be any non-zero real number.

DEFINITION 4.3. - The linear space E Xk consists of all radial

functions 03A6 on R d with the following list of properties. The functions
~ and are locally summable on R d and G’°° outside 0. There exist
constants (3j ( j = 0, l, ...) such that, for every t - 0,1,..., and every
M = 0,1,..., I the function

is a On the other hand, the is

rapidly decreasing as ) x ) -7 00.

The space EÀk has a natural Frechet topology.

LEMMA 4.4. - The tempered distribution Q~d extends for v ~ ~ 2 ,
as a continuous linear functional on As

a function of v, regarded as valued in the dual of (Ed is a meromorphic
function in the entire complex plane, with only simple poles at the points
mentioned.

Proof - First, the behaviour of (D and near 0 is clear: is C°°

throughout R d since 4D is the sum of a function in S(JRd) and of a summable
function with compact support; is a linear combination of

functions I , and of a function which is as regular as one

may wish at 0 E Set

using in an operator-theoretic context Pochhammer’s notation
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Since one of the factors of the differential operator ( ~ ]
mnihilates the function and since

the operator

annihilates the term , it is easy to verify that
E belongs to the space introduced in Definition 2.4, witch 6; == 2M-~-12 d ,
as soon as 2M &#x3E; note that E is as large as one pleases. One may
then define, provided that

L 
-.- 

-.- ~

What remains to be seen is that this definition extends the one already
known in the case when 03A6 E S(JRd): now, this follows from the equation

together with the fact that the distribution Fdv is homogeneous of degree
d d - v.2 

LEMMA 4.5. - The operator ’Hd,Àk preserves the space 

Proof. Let From the beginning of the

proof of the preceding lemma, it is square-integrable, so that T - 
is well-defined in the spectral-theoretic sense. Using (2.42) and (2.43), we
writp

with

The integral from 1 to 00 extends as an entire function of iA. Let M be
an integer &#x3E; 1. From the proof of Lemma 4.4, one sees that, applying the
operator ( to one gets a function which is continuous
at 0 as soon as M &#x3E; d 41, which makes it possible, since M can be
taken arbitrarily large, to extend the function A) as a meromorphic
function of iA in the half-plane Re(iA) &#x3E; -~, setting
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or below, one also has to take into account the singularities in
A) which arise from the regular (even) terms in the expansion of 0(t)

near 0. Finally, the function under consideration extends as a holomorphic
function in the entire plane, save at simple poles given as i~ _ - 2 - Z 2’~ - 2 j

Also, when the imaginary part of A is kept
fixed, the function under study is rapidly decreasing as a function of Re A
as | Re A |I ~ oo, because an integration by parts permits to benefit from
the fact that arbitrary powers of t1t are applicable to the function 0(t) on
the right-hand side of (4.39). Then, we write, using (4.31) and (5.4),

and

Next, we perform the change of contour that corresponds to iA ~ iA + M,
simply paying attention to the poles that may appear in the study of the
second of these two integrals: observe that the function

is entire. 0

Functions 03A6 in the space EÀk are rapidly decreasing, even though
they usually lack regularity at 0 (in a very controlled way): thus, one may
define (Sa, I» for any given slowly increasing sequence a = a2 , ... ) .

LEMMA 4.6. - Under the assumptions of Proposition 3.2, the

decomposition (4.16) is still valid when tested against any function (D in
the space 

Proof. The proof of Proposition 4.2 was based on that of Proposi-
tion 2.6; the latter one, starting from (2.31), was based on a deformation of
contour. This applies equally well in our case: the whole matter reduces to
a question of pole-chasing. Looking at the right-hand side of (4.16), one no-
tices that the new poles that appear come from the behaviour when
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regarded as a continuous linear functional on the space EX,: from Lemma
4.4, these new poles can be only the points iA = + 2j, j = 0, &#x3E; 1 ..
They do not belong to the half-plane 0 in which, following the
proof of Proposition 2.6, the contour deformation takes place. Anyway,
from (4.4) together with the fact that L* (s, f ) is an entire function, the
function L(~ 2013zA, f ) which appears in the integrand on the right-hand side
of (4.16) vanishes at these points, which gives another reason why there
are no new poles to worry about. 11

Before stating the main theorem of this section, it is convenient to

define the true value at 0 of a function 4J C EÀk’ denoted as -cD[[01], which
coincides with V(0) in the case when 4J is continuous at 0, and which is
defined in general as the coefficient qo from the asymptotic expansion (a
consequence of (4.31))

near 0. One then has (still assuming that W = V) the equation

To show this, note that, as a consequence of (4.39) with substituted for

Next, from the same equation,
I . ~

combining the last two equations with the link between A) and
spec(03C8 -A) provided by (4.41), we are done. The equation (4.44) plays in
the present context the same role as the one played by the equation (2.39)
when dealing with holomorphic modular forms.

THEOREM 4.7. - Let f be an even Maass-Hecke cusp-form for the

group ,5’L(2, Z), corresponding to the of the Laplacian, and
define the sequence by the equation (4.15) involving the (slightly
generalized) L-function of f. Assume that L(-!, f) ~ 0, so that the measure
6a does not reduce to zero. Set
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Let V E EN, (in particular, any radial function b E would do), and
set W = For every t &#x3E; 0, one has the equation

Proof. One starts from (4.16), noting that the measure

is invariant under the transform Hd,Àk introduced in (4.31) precisely to
that effect: then, the proof ends just like that of Theorem 2.10, except for
the fact that we have no residue to compute. 0

The remark (ii) that follows the proof of Theorem 2.10, to the effect
that a pair ( ~ ~ I of dual Euclidean norms can be used in place of the
canonical norm ] ] still applies.

In the one-dimensional case, there is a simpler way to associate a
formula of the Poisson type to any given non-holomorphic cusp-form: it

does not reduce to the case d = 1 of the one that precedes, though the
Archimedean symmetry operator H1,Àk is the same.

PROPOSITION 4.8. - Let f be the Maass cusp-form for the group
SL(2, Z) given by the Fourier expansion (4.2). Set

Assume that d = 1, define the space E),, accordingly, and let be still

defined by (4.31). Ex, and W = one has for every t &#x3E; 0 the

equation

Proof. In this case, 1

that, according to Proposition 2.6, £5a : = 6a - 27r L(l, f ) is invariant under
Hl,Àk. a
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There is no need to take for f a (Maass) cusp-form: one can generalize,
say, Prop. 4.8, with the help of the (halved) Eisenstein series [15, p. 209]

provided that some extra terms are granted admission to the summation
formula. To start with, when Re s is large,

We need to generalize the definition 3.3 of the space E~~ , getting a
new space EP as a result: under the assumption that 
the definition is entirely similar, only replacing 1+2~~ by p (or, equivalently,
iAk by 2p - 1).

DEFINITION 4.9..

be its asymptotic expansion near 0 (cf. (4.43)~. One then sets

We also set, as a generalization of (4.31),

(an involutive transformation here considered only on even functions), and
consider relations between the spectral densities of two even functions
and T in the space EP linked by the relation 03C8 = 
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One has (cf. (4.39)) the relation

provided that Re(za)  Re p and Re(iA)  1 - Re p. Applying Definition
4.9 to ~, one sees that, when iA ~ 1 - p, one has

Using (5.4) and (4.58), or (4.41),

and the equation

one gets the equation

similarly,

Also, generalizing (4.44),

THEOREM 4.10. - Let

defined as in (4.55) if r &#x3E;, 1, and let

Also, set

If one has for every t &#x3E; 0 the equation
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Proof. Proposition 2.6, together with its proof, extends as the
equation

where we have been careful to take also the poles 2 - p and ’ + p of the
function as made explicit in (4.53),
into consideration. The other poles ,

when this distribution is regarded as a linear form on Ep (cf. Lemma
4.4), or the pole s = 0, do not enter the picture since, in the proof of
Proposition 2.6, the contour deformation takes place entirely within the

half-plane Re s &#x3E; 2 : anyway, just as in the proof of Lemma 4.6, these poles
correspond to zeros of L(s, f). _

Now, from the equation just before (2.19), one has

The distribution

is invariant under the operator it thus only remains to apply the

equations (4.63) to (4.65). D

5. The Archimedean factor.

Note. - The results of this section are to be used in the remainder

of the paper, and their proof is independent of all that precedes, except for
the definition of the operators and 91,1. ·

We here compute the decomposition into their homogeneous compo-
nents of a number of functions ~, ~, ~ ~ ~ on Also, given a transformation
T of the type Fd,w with w &#x3E; 2 or the transformation construct

explicit pairs of functions (~, T) in the space Q for somme &#x3E; 0 linked

by the equation T = T4D. One has in general, if ~ E L2 
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with

-,. JU .

The function is the spectral density of 03A6 at A. Actually, we shall deal
exclusively with O (d)-invariant functions and we set

~ (x) _ ~ ( ~ x ~ ) , In this case the spectral density at A is of
necessity proportional to the function x - and we set

In the present section, instead of the canonical norm ~ ~ on one can use

throughout a pair ( ~ ~ I II, III III) ) of Euclidean norms associated to quadratic
forms of discriminant one, dual to each other with respect to the canonical

pairing of Rd x Of course, the coefficient A) in (5.3) should
accompany the in general and, at various places (e.g. the
last of the five equations (5.4)), the definition of spec(T; A) should be the
one in relation to the dual In Proposition 5.4, in the statement
that is invariant under Fd,w, the norm that enters the definition (5.12)
of must be taken as self-dual; the same goes in Propositions 5.6 and
5.7.

First, some general transformation rules:

Proof. The first four equations (in which it is of course assumed
that a E R~) are a trivial consequence of (5.1) or (5.2); in the third equa-
tion, it is assumed that the function spec(+; .) extends as a holomorphic
function to some appropriate strip around the real axis. The last one is a

rephrasing of the classical equation

where the dual Euclidean norms I I I and IIIIII are assumed to be associated
to quadratic forms of discriminant one. 0
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LEMMA 5.2. - This is a short list of spectral densities at A (in
other words, a table of Mellin transforms) 

- -

v q 
~ 

G /

It is assumed that Re 0152 &#x3E; 0 in the third and fourth lines, that Re v &#x3E; d 21
in the last one.

Proof. The third of these identities, for instance, is obtained if

one starts from

if one applies [9, p. 91]. The second and fourth equations are consequences
of the first and third equations, together with Lemma 5.1. 0

Recall that

that , and that we are also interested in the operator (in
dimension 1 Thus, in the radial case,

LEMMA 5.3.

and, in the one-dimensional case,
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The following lemma defines the analogue of the Gaussian function as-
sociated with the transformation One should note that À)
vanishes at A = 2d , an important fact also explained by Lemma 2.9.

PROPOSITION 5.4. - Assuming that w &#x3E; 2 , set q = 2w and

The function continuous on I~d and rapidly decreasing at infinity..
It can be made explicit as

It is invariant under the transformation 

In the case when q = 2,3,..., F is a linear combination of generalized
hypergeometric functions (cf. [9, p. 62] for the definition of the generalized
hypergeometric series if needed):

Proof. The integral that defines converges, in view of the

asymptotics [9, p. 11]

of the Gamma function on vertical lines, thanks to the condition w &#x3E; 1/2:
it is even possible to use a contour deformation A - A - iM with M
arbitrarily large, without destroying the convergence, which shows that

is rapidly decreasing as IX 00. Applying Cauchy’s theorem, one
transforms the integral into the power series in the variable indicated.

The invariance of under the transformation is a consequence of

Lemma 5.3 together with the decomposition (5.12).
In order to transform the series (5.14) into the sum of generalized

hypergeometric functions (5.15), it suffices to p + qj, 0  p 
q, 0  j  oo, and to use the multiplication formula [9, p. 3]
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The Fourier transform of the function is especially simple: at the
same time, we show that, when w &#x3E; 2 1, the function lies in the space

C-i : actually, it is immediate that it even lies in the space C£li1 .
PROPOSITION 5.5. - For every w &#x3E; 2 , the function

I. One has

Proof. Using (5.12) and Lemma 5.1, one gets

So as to improve the estimate as Ixl -4- oo, one uses the same contour

deformation the proof of Proposition 5.4: the first
pole one comes across is z = 2 -+- w , which corresponds to a term 
one can then choose M between 4 + ~ and 4 + ~.

In the case when w = 1, one can rewrite (5.19) as

at which point one can use Cauchy’s theorem: alternatively, one can write

and use Lemma 5.2 and Lemma 5.1 (twice). D

A more general class of test functions I&#x3E;~, 1 can be obtained from 
in a way which has some similarity to the way Hermite functions are built
from the Gaussian function: note that, when j = 0, both and as

defined in what follows, reduce to 4)d, 1 - 
~ 

PROPOSITION 5.6. - For every j = 0,1, ..., define the functions

I&#x3E;~,1 and on R d through their Fourier transforms:

and
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(this is the elementary case [9, p. 2641 of the confluent hypergeometric
function 1F1 (a + j ; a ;.) since j is an integer). Each of the two functions

1 is the image of under a polynomial of degree j
in the Euler operator. With Fd,l as defined in Proposition 2.7, one has

. The functions 

Proof. In order to define ~d,1, insert under the integral sign on the
right-hand side of the definition (5.12) of the extra factor 

as expressed as a Pochhammer symbol
The rest is straightforward calculation: (5.19) immediately generalizes to a
computation of (.~’~d,1 ) (~) . On the other hand, defining 1

from which (5.22) easily follows.

PROPOSITION 5.7. - Let

function

is invariant under the transformation H1,p in (4.58).

Proof. - Set

and apply Cauchy’s theorem.
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6. Conclusion: Automorphic distributions.

We have seen that a variety of summation formulas of the Poisson
style can be associated to Dirichlet series with functional equations of
the type which occurs in modular form theory. If such a series D(s) is

invariant, up to some Archimedean (non arithmetic) factor, under the
symmetry s - k - s, the method consists in constructing a comb with
a decomposition into homogeneous parts given as an integral of Eisenstein
distributions with respect to the density D( 2 - iA). Though combs are
precisely what is needed here, it is important to realize that combs do not
exhaust the set of automorphic distributions: these are distributions on R d
invariant under the linear action of the group ,S’L (d, Z) .

In the two-dimensional case, they are exactly an unusual realization
of pairs of automorphic functions on the upper half-plane, a function being
automorphic if it is invariant under the action, by fractional-linear transfor-
mations, of some arithmetic subgroup of say SL (2, Z). The map
from automorphic distributions to such pairs is best constructed with the
help of the (Weyl) pseudodifferential analysis [18]: an alternative construc-
tion [17, section 18] also realizes automorphic distributions as Cauchy data
for the Lax-Phillips scattering theory for the automorphic wave equation
[8]. Recalling that non-holomorphic modular forms are automorphic func-
tions on the upper half-plane, at the same time (generalized) eigenfunctions
of the Laplace-Beltrami operator A, let us define modular distributions as
homogeneous automorphic distributions: that the two concepts are essen-
tially equivalent is due to the fact that, under this map, the operator A - 1/4
on the half-plane corresponds to the square of the Euler operator on R .

Since the Euler operator commutes with linear automorphisms of R 2
the decomposition into homogeneous terms of any automorphic distribution
will involve only modular distributions. Combs of the type considered
in the present paper decompose as integral superpositions of Eisenstein
distributions: needless to say, the terminology comes from the fact that,
under the correspondence under discussion, Eisenstein distributions are
related to (non-holomorphic) Eisenstein series. Discrete sums of special
Eisenstein distributions may also arise in the decomposition of more general
combs: cf. [18, Prop. 4.5] for an example in which all the Eisenstein

distributions associated to parameters which are non-trivial zeros of the
zeta function do appear. But Eisenstein series are only a part (that
corresponding to the continuous spectrum of A) of the family of non-
holomorphic modular forms: absent are the rather poorly understood
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(Maass) cusp-forms. However, there is a canonical generating object for all
modular distributions, including the cusp-distributions, to wit the Bezout
automorphic distribution, introduced in (loc.cit., section 3): it is the sum of
a countable set of measures supported on straight lines, not points; again,
there is a related concept (the non-holomorphic Poincar6 series), due to
Selberg ~11~, in the realm of automorphic functions.

The present generalization of Poisson’s formula bears no relation to
the non-Euclidean Poisson formulas [16, p. 246], originating with Selberg,
which are concerned also with GL(d, Z). For, on one hand, both sides of
the formula discussed here are sums over Zd, whereas the two sides look
quite different - and different from each other - in the formulas just
alluded to. On the other hand, by concentrating on a specific homogeneous
space of to wit we have of course avoided most of the

difficulties of a harmonic analytic nature which arise from the fact that the
symmetric space associated with has rank d - 1: this single fact
explains why the general theory of Eisenstein series is already much more
complicated when d &#x3E; 2 (loc.cit., p. 114 and 184). Again, in the case when
d = 2, nothing is lost by the move from the half-plane to the plane: the
whole theory of non-holomorphic modular forms can be described in terms
of automorphic distributions on the plane. This is not the case when d &#x3E; 2.

The concept of automorphic distribution made the development of
automorphic pseudodifferential analysis possible, in the case of the two-
dimensional phase space. It also led to a good understanding of bilinear
operations (those corresponding to the composition of operators coupled
with spectral decomposition) on some classes of non-holomorphic modular
forms: one application of such [17, section 15] was to the construction of
rather simple Dirichlet series, such as (4.13) (some better-known series are
based on the use of so-called Kloosterman sums), with poles related to
the discrete spectrum of A, or that of series of functions on the half-plane
resembling Eisenstein series, at the same time meromorphic functions of
some parameter, with Maass forms as residues. It would certainly be an
interesting, if quite difficult, job to generalize part of all this to the higher-
dimensional case.
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