Non-vanishing of class group L-functions at the central point
Annales de l'Institut Fourier, Volume 54 (2004) no. 4, pp. 831-847.

Let K=(-D) be an imaginary quadratic field, and denote by h its class number. It is shown that there is an absolute constant c>0 such that for sufficiently large D at least c·h pD (1-p -1 ) of the h distinct L-functions L K (s,χ) do not vanish at the central point s=1/2.

Étant donné un corps quadratique imaginaire K=(-D), notons h son nombre de classes. Nous montrons qu’il existe une constante c telle que pour D assez grand, au moins c·h pD (1-p -1 ) des h fonctions L distinctes L K (s,χ) ne s’annulent pas au point central s=1/2.

DOI: 10.5802/aif.2035
Classification: 11R42, 11M41, 11F67
Keywords: non-vanishing results, $L$-functions, imaginary quadratic fields, mollifier
Mot clés : théorèmes de non-annulation, fonctions $L$, corps quadratique imaginaire, fonction de mollification
Blomer, Valentin 1

1 University of Toronto, Department of Mathematics, 100 St. George Street, Toronto M5S 3G3, Ontario, (Canada)
@article{AIF_2004__54_4_831_0,
     author = {Blomer, Valentin},
     title = {Non-vanishing of class group $L$-functions at the central point},
     journal = {Annales de l'Institut Fourier},
     pages = {831--847},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {54},
     number = {4},
     year = {2004},
     doi = {10.5802/aif.2035},
     zbl = {1063.11040},
     mrnumber = {2111013},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2035/}
}
TY  - JOUR
AU  - Blomer, Valentin
TI  - Non-vanishing of class group $L$-functions at the central point
JO  - Annales de l'Institut Fourier
PY  - 2004
SP  - 831
EP  - 847
VL  - 54
IS  - 4
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2035/
DO  - 10.5802/aif.2035
LA  - en
ID  - AIF_2004__54_4_831_0
ER  - 
%0 Journal Article
%A Blomer, Valentin
%T Non-vanishing of class group $L$-functions at the central point
%J Annales de l'Institut Fourier
%D 2004
%P 831-847
%V 54
%N 4
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.2035/
%R 10.5802/aif.2035
%G en
%F AIF_2004__54_4_831_0
Blomer, Valentin. Non-vanishing of class group $L$-functions at the central point. Annales de l'Institut Fourier, Volume 54 (2004) no. 4, pp. 831-847. doi : 10.5802/aif.2035. https://aif.centre-mersenne.org/articles/10.5802/aif.2035/

[1] D. Bump; S. Friedberg; J. Hoffstein Eisenstein series on the metaplectic group and nonvanishing theorems for automorphic L-functions and their derivatives, Ann. of Math (2), Volume 131 (1990), pp. 53-127 | MR | Zbl

[2] D.A. Burgess On character sums and L-series, Proc. London Math. Soc (2), Volume 12 (1962), pp. 193-206 | MR | Zbl

[3] J.-M. Deshouillers; H. Iwaniec The nonvanishing of Rankin-Selberg zeta-functions at special points, Contemp. Math, Volume 53 (1986), pp. 51-95 | MR | Zbl

[4] W. Duke Hyperbolic distribution problems and half-integral weight Maass forms, Invent. Math, Volume 112 (1988), pp. 73-90 | MR | Zbl

[5] W. Duke; J. Friedlander; H. Iwaniec Class group L-functions, Duke Math. J, Volume 79 (1995), pp. 1-56 | MR | Zbl

[6] E. Fouvry; H. Iwaniec Low-lying zeros of dihedral L-functions, Duke Math. J, Volume 116 (2003), pp. 189-217 | MR | Zbl

[7] H. Iwaniec; P. Sarnak The non-vanishing of central values of automorphic L-functions and the Landau-Siegel zero, Isr. J. Math, Volume 120 (2000), pp. 155-177 | MR | Zbl

[8] N. Katz; P. Sarnak Zeros of zeta-functions and symmetry, Bull. AMS, Volume 36 (1999), pp. 1-26 | MR | Zbl

[9] E. Kowalski; P. Michel; J. VanderKam Mollification of the fourth moment of automorphic L-functions and arithmetic applications, Invent. Math, Volume 142 (2000), pp. 95-151 | MR | Zbl

[10] E. Kowalski; P. Michel; J. VanderKam Non-vanishing of high derivatives of automorphic L-functions at the center of the critical strip, J. Reine Angew. Math, Volume 526 (2000), pp. 1-34 | MR | Zbl

[11] M.R. Murty; V.K. Murty Mean values of derivatives of modular L-series, Ann. of Math (2), Volume 133 (1991), pp. 447-475 | MR | Zbl

[12] M.R. Murty; V.K. Murty Non-vanishing of L-functions and applications, Progress in Mathematics, 157, Birkhäuser, Basel, 1997 | MR | Zbl

[13] A. Perelli; J. Pomykala Averages over twisted elliptic L-functions, Acta Arith, Volume 80 (1997), pp. 149-163 | EuDML | MR | Zbl

[14] J. Pintz Elementary methods in the theory of L-functions II, Acta Arith, Volume 31 (1976), pp. 273-306 | MR | Zbl

[15] D. Rohrlich Nonvanishing of L-functions for GL(2), Invent. Math, Volume 97 (1989), pp. 383-401 | MR | Zbl

[16] G. Shimura On modular forms of half-integral weight, Ann of Math (2), Volume 97 (1973), pp. 440-481 | MR | Zbl

[17] K. Soundararajan Non-vanishing of quadratic Dirichlet L-functions at s=1 2, Ann. of Math (2), Volume 152 (2000), pp. 447-488 | EuDML | Zbl

[18] J.-L. Waldspurger Sur le coefficients de Fourier des formes modulaires de poids demi-entier, J. Math. Pures Appl., Volume 60 (1981), pp. 375-484 | MR | Zbl

Cited by Sources: