On summability of measures with thin spectra
Annales de l'Institut Fourier, Volume 54 (2004) no. 2, pp. 413-430.

We study different conditions on the set of roots of the Fourier transform of a measure on the Euclidean space, which yield that the measure is absolutely continuous with respect to the Lebesgue measure. We construct a monotone sequence in the real line with this property. We construct a closed subset of d which contains a lot of lines of some fixed direction, with the property that every measure with spectrum contained in this set is absolutely continuous. We also give examples of sets with such property that every measure with spectrum contained in them is locally L p summable for suitable p>1. We discuss some related problems; among them we show that if a measure on the real line is such that its Fourier transform vanishes on the sequence (n 1/k ) n=1 , then both its singular and absolutely continuous parts share this property.

On considère des conditions sur l’ensemble des racines de la transformée de Fourier d’une mesure dans l’espace euclidien, qui entraî nent la continuité absolue par rapport à la mesure de Lebesgue. On construit une suite monotone sur la droite réelle avec cette propriété. Nous construisons un sous-ensemble fermé de d contenant un grand nombre de droites dans une direction fixée, tel que toute mesure avec spectre contenu dans cet ensemble est absolument continue. On donne aussi des exemples d’ensembles tels que toute mesure finie de spectre contenu dans un de ces ensembles est localement sommable dans L p , pour un p>1 convenable. Nous discutons d’autres questions en rapport avec ce problème et, entre autres, nous montrons que si la transformée de Fourier d’une mesure sur la droite s’annule sur la suite {n 1/k } n=1 , alors ses parties singulière et absolument continue ont séparément cette propriété.

DOI: 10.5802/aif.2023
Classification: 42B10, 42A55
Keywords: Riesz sets, singular measures, support of Fourier transform
Mot clés : ensembles de Riesz, mesures singulières, support de la transformée de Fourier

Roginskaya, Maria 1; Wojciechowski, Michaël 

1 Chalmers TH Göteborg University, Department of Mathematics, Eklandagatan 86, 41296 Göteborg (Suède), Institute of Mathematics, Polish Academy of Sciences, Sniadeckich 8, I p., 00-950 Warszawa, (Pologne)
@article{AIF_2004__54_2_413_0,
     author = {Roginskaya, Maria and Wojciechowski, Micha\"el},
     title = {On summability of measures with thin spectra},
     journal = {Annales de l'Institut Fourier},
     pages = {413--430},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {54},
     number = {2},
     year = {2004},
     doi = {10.5802/aif.2023},
     zbl = {1056.42009},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2023/}
}
TY  - JOUR
AU  - Roginskaya, Maria
AU  - Wojciechowski, Michaël
TI  - On summability of measures with thin spectra
JO  - Annales de l'Institut Fourier
PY  - 2004
SP  - 413
EP  - 430
VL  - 54
IS  - 2
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2023/
DO  - 10.5802/aif.2023
LA  - en
ID  - AIF_2004__54_2_413_0
ER  - 
%0 Journal Article
%A Roginskaya, Maria
%A Wojciechowski, Michaël
%T On summability of measures with thin spectra
%J Annales de l'Institut Fourier
%D 2004
%P 413-430
%V 54
%N 2
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.2023/
%R 10.5802/aif.2023
%G en
%F AIF_2004__54_2_413_0
Roginskaya, Maria; Wojciechowski, Michaël. On summability of measures with thin spectra. Annales de l'Institut Fourier, Volume 54 (2004) no. 2, pp. 413-430. doi : 10.5802/aif.2023. https://aif.centre-mersenne.org/articles/10.5802/aif.2023/

[A] A.B. Aleksandrov Essays on non locally convex Hardy classes (Lecture Notes in Math.), Volume 864 (1981), pp. 1-89 | MR | Zbl

[deL] K. de Leeuw On L p multipliers, Annals of Math, Volume 81 (1965), pp. 364-379 | MR | Zbl

[E] R.E. Edwards Fourier series, Holt, Rinehart and Winston, Inc., 1967 | Zbl

[HJ] V.P. Havin; B. Jörike The Uncertainty Principle in Harmonic Analysis, Springer-Verlag, Berlin, 1994 | MR | Zbl

[HR] E. Hewitt; K. Ross Abstract Harmonic Analysis, Springer-Verlag, Berlin-Goettingen-Heidelberg, 1963 | Zbl

[M] Y. Meyer Spectres des mesures et mesures absolument continues, Studia Math., Volume 30 (1968), pp. 87-99 | MR | Zbl

[R] M. Roginskaya Two multidimensional analogs of the F. and M. Riesz theorem, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), Volume 255 (1998), pp. 164-176 | MR | Zbl

[RR] M.M. Rao; Z.D. Ren Theory of Orlicz spaces, Marcel Dekker Inc., New York, 1991 | MR | Zbl

[Sh] J. H. Shapiro Subspaces of L p (G) spanned by characters:0<p<1, Israel J. Math., Volume 29 (1978), pp. 248-264 | MR | Zbl

[St] E.M. Stein Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton University Press, Princeton, NJ, 1993 | MR | Zbl

[StW] E.M. Stein; G. Weiss Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, 1971 | MR | Zbl

[W] M. Wojciechowski On the roots of the Fourier transform of Singular measures (to appear)

Cited by Sources: