[Le problème de Serre avec fibres de Reinhardt]
On résoud le problème de Serre pour des fibrés dont les fibres sont des domaines de Reinhardt hyperboliques pseudoconvexes de dimension deux.
The Serre problem is solved for fiber bundles whose fibers are two-dimensional pseudoconvex hyperbolic Reinhardt domains.
Keywords: Serre problem, hyperbolic Reinhardt domains
Mot clés : problème de Serre, domaines de Reinhardt hyperboliques
Pflug, Peter 1 ; Zwonek, Wlodzimierz 2
@article{AIF_2004__54_1_129_0, author = {Pflug, Peter and Zwonek, Wlodzimierz}, title = {The {Serre} problem with {Reinhardt} fibers}, journal = {Annales de l'Institut Fourier}, pages = {129--146}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {54}, number = {1}, year = {2004}, doi = {10.5802/aif.2012}, zbl = {1080.32016}, mrnumber = {2069123}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2012/} }
TY - JOUR AU - Pflug, Peter AU - Zwonek, Wlodzimierz TI - The Serre problem with Reinhardt fibers JO - Annales de l'Institut Fourier PY - 2004 SP - 129 EP - 146 VL - 54 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2012/ DO - 10.5802/aif.2012 LA - en ID - AIF_2004__54_1_129_0 ER -
%0 Journal Article %A Pflug, Peter %A Zwonek, Wlodzimierz %T The Serre problem with Reinhardt fibers %J Annales de l'Institut Fourier %D 2004 %P 129-146 %V 54 %N 1 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2012/ %R 10.5802/aif.2012 %G en %F AIF_2004__54_1_129_0
Pflug, Peter; Zwonek, Wlodzimierz. The Serre problem with Reinhardt fibers. Annales de l'Institut Fourier, Tome 54 (2004) no. 1, pp. 129-146. doi : 10.5802/aif.2012. https://aif.centre-mersenne.org/articles/10.5802/aif.2012/
[Car] Sur les transformations analytiques des domaines cerclés et semicerclés bornés, Math. Ann, Volume 106 (1932), pp. 540-573 | JFM | MR | Zbl
[Coe-Loeb] A counterexample to the Serre problem with a bounded domain in as fiber, Ann. Math., Volume 122 (1985), pp. 329-334 | MR | Zbl
[Dem] Un exemple de fibré holomorphe non de Stein à fibré ayant pour base le disque ou le plan, Invent. Math., Volume 48 (1978), pp. 293-302 | MR | Zbl
[Hir] Domains de Stein et fonctions holomorphes bornées, Math. Ann, Volume 213 (1975), pp. 185-193 | MR | Zbl
[Isa-Kra] Domains with non-compact automorphism group: a survey, Adv. Math., Volume 146 (1999), pp. 1-38 | MR | Zbl
[Kön] Über die Holomorphie-Vollständigkeit lokaltrivialer Faserräume, Math. Ann, Volume 189 (1970), pp. 178-184 | MR | Zbl
[Kru] Holomorphic automorphism of hyperbolic Reinhardt domains, Math. USSR Izv, Volume 32 (1989) no. 1, pp. 15-38 | MR | Zbl
[Loeb] Un nouveau contre-exemple a une conjecture de Serre (1984) Publ. IRMA Lille, 6(4)
[Mok] The Serre problem on Riemann surfaces, Math. Ann, Volume 258 (1981), pp. 145-168 | MR | Zbl
[Nar] Several complex variables, Chicago Lectures in Mathematics, The University of Chicago Press, Chicago-London, 1971 | MR | Zbl
[Pfl] About the Carathéodory completeness of all Reinhardt domains, Functional Analysis, Holomorphy and Approximation Theory II (1984), pp. 331-337 | MR | Zbl
[Shi] Automorphisms and equivalence of bounded Reinhardt domains not containing the origin, Tohoku Math. J., Volume 40 (1988) no. 1, pp. 119-152 | MR | Zbl
[Sib] Fibrés holomorphes et métrique de Carathéodory, C. R. Acad. Sc. Paris, Volume 279 (1974), pp. 261-264 | MR | Zbl
[Siu] Holomorphic fiber bundles whose fibers are bounded Stein domains with first Betti number, Math. Ann, Volume 219 (1976), pp. 171-192 | MR | Zbl
[Sko] Fibrés holomorphes à base fibre de Stein, Invent. Math, Volume 43 (1977), pp. 97-107 | MR | Zbl
[Ste] Fonctions plurisousharmoniques et convexité holomorphe de certaines fibrés analytiques, Séminaire Pierre Lelong (Analyse, 1973/1974) (Lecture Notes in Mathematics), Volume 474 (1975), pp. 155-179 | MR | Zbl
[Zaf] Serre problem and Inoue-Hirzebruch surfaces, Math. Ann, Volume 319 (2001) no. 2, pp. 395-420 | MR | Zbl
[Zwo1] On hyperbolicity of pseudoconvex Reinhardt domains, Arch. Math, Volume 72 (1999) no. 4, pp. 304-314 | MR | Zbl
[Zwo2] Completeness, Reinhardt domains and the method of complex geodesics in the theory of invariant functions, Diss. Math, Volume 388 (2000), pp. 1-103 | MR | Zbl
Cité par Sources :