Toric embedded resolutions of quasi-ordinary hypersurface singularities
Annales de l'Institut Fourier, Volume 53 (2003) no. 6, pp. 1819-1881.

We build two embedded resolution procedures of a quasi-ordinary singularity of complex analytic hypersurface, by using toric morphisms which depend only on the characteristic monomials associated to a quasi-ordinary projection of the singularity. This result answers an open problem of Lipman in Equisingularity and simultaneous resolution of singularities, Resolution of Singularities, Progress in Mathematics No. 181, 2000, 485- 503. In the first procedure the singularity is embedded as hypersurface. In the second procedure, which is inspired by a work of Goldin and Teissier for plane curves (see Resolving singularities of plane analytic branches with one toric morphism, loc. cit., pages 315-340), we re-embed the singularity in an affine space of bigger dimension in such a way that one toric morphism provides its embedded resolution. We compare both procedures and we show that they coincide under suitable hypothesis.

Nous construisons deux procédés de résolution plongée d'un germe de singularité quasi- ordinaire d'hypersurface analytique complexe qui ne dépendent que des monômes caractéristiques associés à une projection quasi-ordinaire du germe. Ce résultat est une solution à l'un des problèmes ouverts posés par Lipman dans Equisingularity and simultaneous resolution of singularities, Resolution of Singularities, Progress in Mathematics No. 181, 2000, 485-503. Dans le premier procédé la singularité est plongée comme hypersurface. Dans le deuxième procédé, qui est inspiré par un travail de Goldin et Teissier pour les germes de courbes planes (voir Resolving singularities of plane analytic branches with one toric morphism, loc. cit., pages 315-340), la singularité est replongée convenablement dans un espace affine de dimension plus grande et nous construisons des résolutions plongées avec un seul morphisme torique. Nous comparons ces deux procédés et nous montrons qu'ils coïncident sous certaines hypothèses.

DOI: 10.5802/aif.1993
Classification: 32S15,  32S45,  14M25,  14E15
Keywords: singularities, embedded resolution, discriminant, topological type
@article{AIF_2003__53_6_1819_0,
     author = {Gonz\'alez P\'erez, Pedro D.},
     title = {Toric embedded resolutions of quasi-ordinary hypersurface singularities},
     journal = {Annales de l'Institut Fourier},
     pages = {1819--1881},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {53},
     number = {6},
     year = {2003},
     doi = {10.5802/aif.1993},
     mrnumber = {2038781},
     zbl = {1052.32024},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1993/}
}
TY  - JOUR
TI  - Toric embedded resolutions of quasi-ordinary hypersurface singularities
JO  - Annales de l'Institut Fourier
PY  - 2003
DA  - 2003///
SP  - 1819
EP  - 1881
VL  - 53
IS  - 6
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.1993/
UR  - https://www.ams.org/mathscinet-getitem?mr=2038781
UR  - https://zbmath.org/?q=an%3A1052.32024
UR  - https://doi.org/10.5802/aif.1993
DO  - 10.5802/aif.1993
LA  - en
ID  - AIF_2003__53_6_1819_0
ER  - 
%0 Journal Article
%T Toric embedded resolutions of quasi-ordinary hypersurface singularities
%J Annales de l'Institut Fourier
%D 2003
%P 1819-1881
%V 53
%N 6
%I Association des Annales de l’institut Fourier
%U https://doi.org/10.5802/aif.1993
%R 10.5802/aif.1993
%G en
%F AIF_2003__53_6_1819_0
González Pérez, Pedro D. Toric embedded resolutions of quasi-ordinary hypersurface singularities. Annales de l'Institut Fourier, Volume 53 (2003) no. 6, pp. 1819-1881. doi : 10.5802/aif.1993. https://aif.centre-mersenne.org/articles/10.5802/aif.1993/

[A1] S.S. Abhyankar On the ramification of algebraic functions., Amer. J. Math., Tome 77 (1955), pp. 575-592 | DOI | MR | Zbl

[A2] S.S. Abhyankar Inversion and invariance of characteristic pairs, Amer. J. Math, Tome 89 (1967), pp. 363-372 | DOI | MR | Zbl

[A3] S.S. Abhyankar Expansion Techniques in Algebraic Geometry, Tata Instit. Fund. Research, Bombay (1977)

[A'C-Ok] N. A' Campo; M. Oka Geometry of plane curves via Tschirnhausen resolution tower, Osaka J. Math, Tome 33 (1996), pp. 1003-1033 | MR | Zbl

[A-M] S.S. Abhyankar; T. Moh Newton-Puiseux Expansion and Generalized Tschirnhausen Transformation I-II, J. reine angew. Math, Tome 260 (1973), pp. 47-83 | DOI | MR | Zbl

[A-M] S.S. Abhyankar; T. Moh Newton-Puiseux expansion and generalized Tschirnhausen transformation. I, II., J. Reine Angew. Math., Tome 261 (1973), pp. 29-54 | MR | Zbl

[B-M] C. Ban; L. McEwan Canonical resolution of a quasi-ordinary surface singularity, Canad. J. Math., Tome 52 (2000) no. 6, pp. 1149-1163 | DOI | MR | Zbl

[B-P-V] W. Barth; C. Peters; A. Van de Ven Compact Complex Surfaces, Annals of Math. Studies (3), Springer-Verlag, 1984 | MR | Zbl

[Bbk] N. Bourbaki Algebre commutative Tome Chap. I-IV, Masson, 1981 | MR | Zbl

[Ca] A. Campillo Algebroid Curves in positive characteristic, Lecture Notes in Mathematics, Tome 813, Springer, Berlin, 1980 | MR | Zbl

[Co] D. Cox; H. Hauser, J. Lipman, F.Oort and A. Quiros. Toric Varieties and Toric Resolutions, Resolution of Singularities. A research textbook in tribute to Oscar Zariski (Progress in Mathematics) Tome 181 (2000), pp. 259-283 | Zbl

[Eg] H. Eggers Polarinvarianten und die Topologie von Kurvensingularitaten, Bonner Mathematische Schriften, Tome 147 (1983) | MR | Zbl

[Ew] G. Ewald Combinatorial Convexity and Algebraic Geometry, Springer-Verlag, 1996 | MR | Zbl

[F] W. Fulton Introduction to Toric Varieties, Annals of Math. Studies, Tome 131, Princeton University Press, 1993 | MR | Zbl

[G-P] J. Gwo\' zdziewicz; A. Ploski On the Approximate Roots of Polynomials, Annales Polonici Mathematici, Tome LX (1995) no. 3, pp. 199-210 | MR | Zbl

[G-T] R. Goldin; B. Teissier; H. Hauser, J. Lipman, F.Oort and A. Quiros. Resolving singularities of plane analytic branches with one toric morphism, Resolution of Singularities. A research textbook in tribute to Oscar Zariski. (Progress in Mathematics) Tome 181 (2000), pp. 315-340 | Zbl

[Gau] Y-N. Gau Embedded Topological classification of quasi-ordinary singularities, Memoirs of the American Mathematical Society, Tome 388 (1988) | MR | Zbl

[GB1] E.R. Garc\'ia; Barroso Invariants des singularités de courbes planes et courbure des fibres de Milnor (1996) (Tesis Doctoral, Universidad de La Laguna (Spain))

[GB2] E.R. Garc\'ia; Barroso Sur les courbes polaires d'une courbe plane réduite, Proc. London Math. Soc, Tome 81 (2000) no. 1, pp. 1-28 | DOI | MR | Zbl

[GB-GP] E.R. Garc\'ia; Barroso; P.D. González; Pérez Decomposition in bunches of the critical locus of a quasi-ordinary map (submitted). | Zbl

[GP3] P.D. González; Pérez The semigroup of a quasi-ordinary hypersurface (to appear in J. Inst. Math. Jussieu) | MR

[GP1] P.D. González; Pérez Singularités quasi-ordinaires toriques et polyèdre de Newton du discriminant, Canadian J. Math., Tome 52 (2000) no. 2, pp. 348-368 | DOI | MR | Zbl

[GP2] P.D. González; Pérez Quasi-ordinary singularities via toric geometry (2000) (Tesis Doctoral, Universidad de La Laguna)

[GP-M-N] P.D. González; Pérez; L.J. Mc; Ewan; A. Némethi The zeta function of a quasi-ordinary singularity II (to appear in R. Michler Memorial, Proc. Amer. Math. Soc.) | MR | Zbl

[GP-T] P.D. González; Pérez; B. Teissier Toric embedded resolution of non necessarily normal toric varieties, to appear in C. R. Acad. Sci. Paris, Sér. I Math. | Zbl

[GS-LJ] G. Gonzalez-Sprinberg; M. Lejeune-Jalabert Modèles canoniques plongés. I, Kodai Math. J., Tome 14 (1991) no. 2, pp. 194-209 | DOI | MR | Zbl

[J] H.W.E. Jung Darstellung der Funktionen eines algebraischen Körpers zweier unabhaängigen Veränderlichen x, y in der Umgebung einer stelle x=a, y=b, J. reine angew. Math., Tome 133 (1908), pp. 289-314 | DOI | JFM

[K-K-M-S] G. Kempf; F. Knudsen; D. Mumford; B. St-Donat Toroidal Embeddings, Springer Lecture Notes in Mathematics, Tome 339, Springer Verlag, 1973 | Zbl

[Kou] A.G. Kouchnirenko Polyèdres de Newton et nombres de Milnor, Inv. Mat, Tome 32 (1976), pp. 1-31 | DOI | MR | Zbl

[L1] J. Lipman Quasi-ordinary singularities of embedded surfaces (1965) (Thesis, Harvard University)

[L2] J. Lipman Introduction to Resolution of Singularities, Proceedings of Symposia in Pure Mathematics, Tome 29 (1975), pp. 187-230 | MR | Zbl

[L3] J. Lipman Quasi-ordinary singularities of surfaces in 3 , Proceedings of Symposia in Pure Mathematics, Tome 40 (1983) no. 2, pp. 161-172 | MR | Zbl

[L4] J. Lipman Topological invariants of quasi-ordinary singularities, Memoirs of the American Mathematical Society, Tome 388 (1988) | MR | Zbl

[L5] J. Lipman; H. Hauser, J. Lipman, F.Oort and A. Quiros. Equisingularity and simultaneous resolution of singularities, Resolution of Singularities. A research textbook in tribute to Oscar Zariski. (Progress in Mathematics) Tome 181 (2000), pp. 485-503 | Zbl

[L-M-W] D.T. Lê; F. Michel; C. Weber Sur le comportement des polaires associées aux germes de courbes planes, Compositio Math., Tome 72 (1989) no. 1, pp. 87-113 | Numdam | MR | Zbl

[Lau] H. Laufer Normal two dimensional singularities, Annals of Math. Studies, Tome 71, Princenton University Press, 1971 | MR | Zbl

[Le-Ok] D.T. Lê; M. Oka On resolution complexity of plane curves, Kodaira Math. J, Tome 18 (1995), pp. 1-36 | DOI | MR | Zbl

[LJ] M. Lejeune-Jalabert; Lê D\ ung Tráng Sur l'équivalence des singularités des courbes algebro\" \i des planes (coefficients de Newton), Introduction à la théorie des singularités I (1988), pp. 49-154 | Zbl

[LJ-R] M. Lejeune-Jalabert; A. Reguera López Arcs and wedges on sandwiched surface singularities, Amer. J. Math, Tome 121 (1999) no. 6, pp. 1191-1213 | DOI | MR | Zbl

[LJ-R2] M. Lejeune-Jalabert; A. Reguera López Desingularization of both a plane branch C and its monomial curve C Γ (2000) (Manuscript)

[Lu] I. Luengo On the structure of embedded algebroid surfaces, Proceedings of Symposia in Pure Mathematics, Tome 40 (1983), pp. 185-193 | MR | Zbl

[M-N] L.J. McEwan; A. Némethi The zeta function of a quasi-ordinary singularity I (to appear in Compositio Math.) | MR | Zbl

[Me] M. Merle Invariants polaires des courbes planes, Inv. Math., Tome 41 (1977), pp. 103-111 | DOI | MR | Zbl

[Mu] D. Mumford The Red Book on Varieties and Schemes, Lecture Notes in Mathematics, Tome 1358, Springer-Verlag, 1988 | MR | Zbl

[Od] T. Oda Convex Bodies and Algebraic Geometry, Annals of Math. Studies, Tome 131, Springer-Verlag, 1988 | MR | Zbl

[Ok] M. Oka; A. Campillo López and L. Narváez Macarro Geometry of plane curves via toroidal resolution, Algebraic Geometry and Singularities (Progress in Mathematics) Tome 139 (1996) | Zbl

[PP1] P. Popescu-Pampu; F.-V. Kuhlmann, S.Kuhlmann, M. Marshall eds Approximate roots, Valuation Theory and its Applications (Fields Inst. Communications Ser.) Tome vol. II | Zbl

[PP2] P. Popescu-Pampu Arbres de contact des singularités quasi-ordinaires et graphes d'adjacence pour les 3-variétés réelles (2001) (Thèse de Doctorat, Université de Paris 7)

[Re] J.E. Reeve A summary of results on the topological classification of plane algebroid singularities, Rend. Sem. Mat. Univ. e Politec. Torino (1954-55), Tome 14, pp. 159-187 | Zbl

[St] B. Sturmfels Gröbner Bases and Convex Polytopes, University Lecture Series, Tome Vol 8, American Mathematical Society, 1996 | MR | Zbl

[T1] B. Teissier The monomial curve and its deformations. Appendix in [Z6]

[T2] B. Teissier; F.-V. Kuhlmann, S. Kuhlmann, M. Marshall eds. Valuations, Deformations and Toric Geometry, Valuation Theory and its Applications. (Fields Inst. Communications Ser.) Tome vol. II | Zbl

[V1] O. Villamayor Constructiveness of Hironaka's resolution., Ann. Sci. Ecole Norm. Sup. (4), Tome 22 (1989) no. 1, pp. 1-32 | Numdam | MR | Zbl

[V2] O. Villamayor On Equiresolution and a question of Zariski, Acta Math, Tome 185 (2000), pp. 123-159 | DOI | MR | Zbl

[W] R.J. Walker Reduction of the Singularities of an Algebraic Surface, Annals of Maths, Tome 36 (1935) no. 2, pp. 336-365 | DOI | JFM | MR

[Wa] C.T.C. Wall Chains on the Eggers tree and polar curves, Revista Mat. Iberoamericana, Tome 19 (2003), pp. 1-10 | MR | Zbl

[Z1] O. Zariski Le probléme de la réduction des singularités d'une variété algébrique, Bull. Sci. Mathématiques, Tome 78 (1954), pp. 31-40 | MR | Zbl

[Z2] O. Zariski The connectedness theorem for birrational transformations, Algebraic Geometry and Topology (Symposium in honor of S. Lefschetz) (1955), pp. 182-188 | Zbl

[Z3] O. Zariski Studies in Equisingularity. I., Amer. J. Math., Tome 87 (1965), pp. 507-536 | MR | Zbl

[Z3] O. Zariski Studies in equisingularity. II., Amer. J. Math., Tome 87 (1965), pp. 972-1006 | MR | Zbl

[Z5] O. Zariski Exceptional Singularities of an Algebroid Surface and their Reduction, Atti. Accad. Naz. Lincei Rend., Cl. Sci. Fis. Mat. Natur. (8), Tome 43 (1967), pp. 135-146 | MR | Zbl

[Z4] O. Zariski; Edizioni Cremonese Contributions to the problem of equisingularity, Questions on Algebraic varieties. (C.I.M.E., III ciclo, Varenna 7-17 Settembre 1969) (1970), pp. 261-343 | Zbl

[Z3] O. Zariski Collected Papers Tome IV (1979)

[Z4] O. Zariski Collected papers Tome IV (1979)

[Z5] O. Zariski Collected papers Tome I (1979)

[Z6] O. Zariski Le problème des modules pour les branches planes, Hermann, Paris, 1986 | MR | Zbl

Cited by Sources: