Given a holomorphic mapping of degree we give sufficient conditions on a positive closed (1,1) current of of unit mass under which converges to the Green current as . We also conjecture necessary condition for the same convergence.
Pour toute application de degré nous donnons des conditions suffisantes sur un courant positif fermé de bidegré , pour que la suite converge vers le courant de Green lorsque . Nous conjecturons aussi des conditions nécessaires pour ce problème de convergence.
Keywords: holomorphic dynamics, currents, Lelong numbers, equidistribution, Kilseman numbers, volume estimates, asymptotic multiplicities
Mot clés : dynamique holomorphe, courants, nombre de Lelong, équidistribution, nombre de Kiselman, estimations de volume, multiplicités asymptotiques
Favre, Charles 1; Jonsson, Mattias 2
@article{AIF_2003__53_5_1461_0, author = {Favre, Charles and Jonsson, Mattias}, title = {Brolin's theorem for curves in two complex dimensions}, journal = {Annales de l'Institut Fourier}, pages = {1461--1501}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {53}, number = {5}, year = {2003}, doi = {10.5802/aif.1985}, zbl = {02014683}, mrnumber = {2032940}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1985/} }
TY - JOUR AU - Favre, Charles AU - Jonsson, Mattias TI - Brolin's theorem for curves in two complex dimensions JO - Annales de l'Institut Fourier PY - 2003 SP - 1461 EP - 1501 VL - 53 IS - 5 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1985/ DO - 10.5802/aif.1985 LA - en ID - AIF_2003__53_5_1461_0 ER -
%0 Journal Article %A Favre, Charles %A Jonsson, Mattias %T Brolin's theorem for curves in two complex dimensions %J Annales de l'Institut Fourier %D 2003 %P 1461-1501 %V 53 %N 5 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.1985/ %R 10.5802/aif.1985 %G en %F AIF_2003__53_5_1461_0
Favre, Charles; Jonsson, Mattias. Brolin's theorem for curves in two complex dimensions. Annales de l'Institut Fourier, Volume 53 (2003) no. 5, pp. 1461-1501. doi : 10.5802/aif.1985. https://aif.centre-mersenne.org/articles/10.5802/aif.1985/
[B] Invariant sets under iteration of rational functions, Ark. Mat, Volume 6 (1965), pp. 103-144 | DOI | MR | Zbl
[BD] Deux caractérisations de la mesure d'équilibre d'un endomorphisme de (to appear in Publ. Math. IHES.) | Numdam | Zbl
[BS] Fatou-Bieberbach domains arising from polynomial diffeomorphisms, Indiana Math. J, Volume 40 (1991), pp. 789-792 | DOI | MR | Zbl
[CL] . ph{{Hypersurfaces exceptionnelles des endomorphismes de , Bol. Soc. Brasil. Mat. (N.S.), Volume 31 (2000), pp. 155-161 | DOI | MR | Zbl
[D] Algebraic and geometric dynamics in several complex variables (2000) (PhD thesis, University of Michigan)
[D1] Monge-Ampère operators, Lelong numbers and intersection theory., Complex analysis and geometry (Univ. Ser. Math) (1993), pp. 115-193 | Zbl
[D2] Pseudoconvex-concave duality and regularization of currents., Several complex variables (Berkeley, CA, 1995-1996) (1999), pp. 233-271 | Zbl
[DJ] Holomorphic mappings of preserving a family of curves (preprint.)
[F1] Note on pull-back and Lelong number of currents, Bull. Soc. Math. France, Volume 127 (1999), pp. 445-458 | Numdam | MR | Zbl
[F2] Dynamique des applications rationnelles (2000) (PhD thesis, Université de Paris Sud, Orsay)
[F3] Multiplicity of holomorphic functions, Math. Ann, Volume 316 (2000), pp. 355-378 | DOI | MR | Zbl
[FG] Dynamique des applications rationnelles des espaces multiprojectifs, Indiana Math. J., Volume 50 (2001), pp. 881-934 | MR | Zbl
[FLM] An invariant measure for rational maps, Bol. Soc. Bras. Mat., Volume 14 (1983), pp. 45-62 | DOI | MR | Zbl
[FS1] Complex Hénon mappings in and Fatou-Bieberbach domains, Duke Math. J., Volume 65 (1992), pp. 345-380 | DOI | MR | Zbl
[FS2] Complex dynamics in higher dimension., Complex Potential Theory (1994), pp. 131-186
[FS3] Complex dynamics in higher dimension I, Astérisque, Volume 222 (1994), pp. 201-231 | MR | Zbl
[FS4] Complex dynamics in higher dimension II., Modern Methods in Complex Analysis (Annals of Mathematics Studies), Volume 137 (1995), pp. 135-182 | Zbl
[H] Introduction to complex analysis in several variables, North Holland, 1990 | MR | Zbl
[K1] Attenuating the singularities of plurisubharmonic functions, Ann. Polon. Math, Volume 60 (1994), pp. 173-197 | MR | Zbl
[K2] Ensembles de sous-niveau et images inverses des fonctions plurisousharmoniques, Bull. Sci. Math., Volume 124 (2000), pp. 75-92 | DOI | MR | Zbl
[Kl] Pluripotential theory, London Mathematical Society Monographs, New Series, Oxford Science Publications, 1991 | MR | Zbl
[L] Entropy properties of rational endomorphisms of the Riemann sphere, Ergodic Theory Dynam. Systems, Volume 3 (1983), pp. 351-385 | MR | Zbl
[Lo] Introduction to complex analytic geometry, Birkhäuser Verlag, Basel, 1991 | MR | Zbl
[M] Singularités des fonctions plurisousharmoniques et courants de Liouville (2001) (Thèse de la faculté des sciences de Monastir, Tunisie)
[RS] Value distribution for sequences of rational mappings and complex dynamics, Indiana Univ. Math. J, Volume 46 (1997), pp. 897-932 | DOI | MR | Zbl
[S] Sous-ensembles analytiques d'ordre fini ou infini dans , Bull. Soc. Math. France, Volume 100 (1972), pp. 353-408 | Numdam | MR | Zbl
[SSU] Totally invariant curves on (preprint)
Cited by Sources: