[Comportement asymptotique et stabilité des solutions globales des équations de Navier-Stokes]
On considère une solution forte et globale des équations de Navier-Stokes. On montre qu'elle se comporte comme une solution petite en temps grand. En combinant ce résultat asymptotique avec des propriétés de moyenne en temps, on obtient la stabilité d'une telle solution globale.
We consider an a priori global strong solution to the Navier-Stokes equations. We prove it behaves like a small solution for large time. Combining this asymptotics with uniqueness and averaging in time properties, we obtain the stability of such a global solution.
Keywords: Navier-Stokes equations, large time asymptotics, stability
Mot clés : équations de Navier-Stokes, comportement asymptotique en grand temps, stabilité
Gallagher, Isabelle 1 ; Iftimie, Dragos 2 ; Planchon, Fabrice 3
@article{AIF_2003__53_5_1387_0, author = {Gallagher, Isabelle and Iftimie, Dragos and Planchon, Fabrice}, title = {Asymptotics and stability for global solutions to the {Navier-Stokes} equations}, journal = {Annales de l'Institut Fourier}, pages = {1387--1424}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {53}, number = {5}, year = {2003}, doi = {10.5802/aif.1983}, zbl = {1038.35054}, mrnumber = {2032938}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1983/} }
TY - JOUR AU - Gallagher, Isabelle AU - Iftimie, Dragos AU - Planchon, Fabrice TI - Asymptotics and stability for global solutions to the Navier-Stokes equations JO - Annales de l'Institut Fourier PY - 2003 SP - 1387 EP - 1424 VL - 53 IS - 5 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1983/ DO - 10.5802/aif.1983 LA - en ID - AIF_2003__53_5_1387_0 ER -
%0 Journal Article %A Gallagher, Isabelle %A Iftimie, Dragos %A Planchon, Fabrice %T Asymptotics and stability for global solutions to the Navier-Stokes equations %J Annales de l'Institut Fourier %D 2003 %P 1387-1424 %V 53 %N 5 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.1983/ %R 10.5802/aif.1983 %G en %F AIF_2003__53_5_1387_0
Gallagher, Isabelle; Iftimie, Dragos; Planchon, Fabrice. Asymptotics and stability for global solutions to the Navier-Stokes equations. Annales de l'Institut Fourier, Tome 53 (2003) no. 5, pp. 1387-1424. doi : 10.5802/aif.1983. https://aif.centre-mersenne.org/articles/10.5802/aif.1983/
[1] On the stability of global solutions to Navier-Stokes equations in the space (to appear in J. Math. Pures Appl.) | MR | Zbl
[2] Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Sci. École Norm. Sup. (4), Volume 14 (1981) no. 2, pp. 209-246 | Numdam | MR | Zbl
[3] Existence of weak solutions for the Navier-Stokes equations with initial data in , Trans. Amer. Math. Soc, Volume 318 (1990) no. 1, pp. 179-200 | DOI | MR | Zbl
[4] On the regularity of the bilinear term for solutions to the incompressible Navier-Stokes equations, Rev. Mat. Iberoamericana, Volume 16 (2000) no. 1, pp. 1-16 | DOI | MR | Zbl
[5] Remarques sur l'existence globale pour le système de Navier-Stokes incompressible, SIAM Journal Math. Anal, Volume 23 (1992), pp. 20-28 | DOI | MR | Zbl
[6] Théorèmes d'unicité pour le système de Navier-Stokes tridimensionnel, J. Anal. Math, Volume 77 (1999), pp. 27-50 | DOI | MR | Zbl
[7] Flot de champs de vecteurs non lipschitziens et équations de Navier-Stokes, J. Differential Equations, Volume 121 (1995) no. 2, pp. 314-328 | DOI | MR | Zbl
[8] Unicité dans et d'autres espaces fonctionnels limites pour Navier-Stokes, Rev. Mat. Iberoamericana, Volume 16 (2000) no. 3, pp. 605-667 | DOI | MR | Zbl
[9] Non-explosion en temps grand et stabilité de solutions globales des équations de Navier-Stokes, C. R. Acad. Sci. Paris, Sér. I Math, Volume 334 (2002), pp. 289-292 | MR | Zbl
[10] On infinite energy solutions to the Navier-Stokes equations: global 2D existence and 3D weak-strong uniqueness (2001) (to appear in Arch. Rat. Mech. An) | Zbl
[11] On the nonstationary Navier-Stokes system, Rend. Sem. Mat. Univ. Padova, Volume 32 (1962), pp. 243-260 | Numdam | MR | Zbl
[12] Stability estimate of strong solutions for the Navier-Stokes system and its applications, Electron. J. Differential Equations (electronic), Volume 15 (1998), pp. 1-23 | MR | Zbl
[13] Well-posedness for the Navier-Stokes equations, Adv. Math, Volume 157 (2001) no. 1, pp. 22-35 | DOI | MR | Zbl
[14] Recent progress in the Navier-Stokes problem (2002) (à paraître, CRC Press)
[15] Sur le mouvement d'un liquide visqueux remplissant l'espace, Acta Mathematica, Volume 63 (1934), pp. 193-248 | DOI | JFM
[16] Asymptotic behavior of global solutions to the Navier-Stokes equations in , Rev. Mat. Iberoamericana, Volume 14 (1998) no. 1, pp. 71-93 | DOI | MR | Zbl
[17] Sur un inégalité de type Poincaré, C. R. Acad. Sci. Paris, Sér. I Math, Volume 330 (2000) no. 1, pp. 21-23 | DOI | MR | Zbl
[18] Du local au global: interpolation entre données peu régulières et lois de conservation, Séminaire: Équations aux Dérivées Partielles, Volume Exp. No. IX, 18 (2002), pp. 2001-2002
[19] Global stability of large solutions to the 3D Navier-Stokes equations, Comm. Math. Phys, Volume 159 (1994) no. 2, pp. 329-341 | DOI | MR | Zbl
[20] personnal communication.
[21] Incompressible flows of an ideal fluid with vorticity in borderline spaces of Besov type, Annales Scientifiques de l'École Normale Supérieure, Volume 32 (1999), pp. 769-812 | Numdam | MR | Zbl
[22] The equations of Navier-Stokes and abstract parabolic equations, Friedr. Vieweg \& Sohn, Braunschweig, 1985 | MR
Cité par Sources :