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ASYMPTOTICS AND STABILITY
FOR GLOBAL SOLUTIONS

TO THE NAVIER-STOKES EQUATIONS

by I. GALLAGHER, D. IFTIMIE and F. PLANCHON

Introduction.

We consider the incompressible Navier-Stokes equations in R~,

There exist essentially two different kinds of results on the Cauchy problem
for these equations. In the pioneering work [15], Jean Leray introduced the
concept of weak solutions and proved global existence for datum uo E L2.
However, their uniqueness (or propagation/breakdown of regularity for

smooth data) has remained an open problem. In ~11~, H. Fujita and T. Kato
obtained solutions for datum uo E H 2 by semi-group methods. These
solutions are unique ( ~8~ ) but only local in time: u E C ([0, T*), H 2 ) , unless
one is willing to make a smallness assumption on the datum. This line
of work has been subsequently extended by many authors, see [14] for a
bibliography. The most recent result states global well-posedness for small
datum in BMO-1, [13]. On the other hand, in an attempt to bridge the gap

Keywords: Navier-Stokes equations - Large time asymptotics - Stability.
Math. classification: 35B35 - 35B40 - 76D05.
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between weak L2 solutions and strong L3 (or j¡1/2) solutions, C. Calderon
proved existence of global weak solutions with datum in LP, 2 ~ p  3,
[3]. These results were later recovered independently by P.-G. Lemarié and
extended to uniformly locally L2 datum [14].

The theory of weak solutions is intimately tied to the specific structure
of the Navier-Stokes equations, and in particular to the energy inequality.
On the other hand, Kato’s approach is more general and it can be applied
to many parabolic (or dispersive) semilinear equations, as it does not use in
any way the special form of the Navier-Stokes equations. One can relate the
use of different spaces for the datum to scaling considerations: the energy
inequality involves the L2 norm, which is below the scale-invariant norm
for the equations, namely L3. Hence the Navier-Stokes equations can be
said to be "supercritical" with respect to scaling. This seems to preclude
any attempt to use the energy inequality to derive some information for
strong solutions. In [3], the weak and strong theories are blended together
to provide infinite energy weak solutions, including the case of L3 datum.
In [10], we used a similar approach in 2D: the weak and strong theories
coincide to provide global strong L2 solutions, and we extended global
existence of strong solutions to large datum between L2 and BMO-1. In
the present work, we develop this approach in 3D and study a priori global
strong solutions. Let us consider a particular case of our results: take a

strong solution E Ct (L3 ) . Such a solution admits a maximal time of
existence T*. Let us suppose that T* = +oo (which is only proved for
small data or special cases like axisymetric data). In a first step, we prove
there cannot be blow-up at infinity. In fact, we prove a stronger result,
which is decay to zero of the L3 norm for large time. This smallness at
infinity can be combined with persistence of local in time averages to prove
that various mixed space-time norms are globally defined for such a global
solution. Then, we proceed to prove the stability of this solution. Hence,
the set of initial data in L3 for which one has global existence is open.
We note that the key step is to obtain decay at infinity: under such an
assumption, combined with local space-time integrability, stability in L3
was obtained in [12].

Our approach relies on frequency localization and paradifferential
calculus, combined with smoothing properties of the heat kernel (namely,
regularity gains through time averaging). The reader may consult [6] for
a very nice presentation in the context of the Navier-Stokes equations.
Hence the natural framework becomes data in Besov spaces, and we will

. 3 _
indeed prove our results for datum uo E Bgq , with 1  p, q  oo. Remark
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we miss the end-point tor which our techniques are known to

break down. One has instead to rely on pointwise decay estimates for the
parabolic linearized equations. Estimates of this type have been developped
by P. Tchamitchian ([20]), and allow to recover the L3 stability result under
a smallness at infinity condition: such a condition has been derived in [14]
as a by-product of the construction of locally L2 weak solutions. We believe
that the BMO-1 stability can be treated by combining our approach of the
asymptotics (which can be made independent of the technical tools at use
in the present work) with different estimates on the parabolic flow (after
completion of the present work, we were informed that this was indeed
carried out [1]).

Let us in this introduction state a theorem which does not require
any Besov spaces, at least in its statement. It states the L3 case (covered
later by Theorem 3.2), and is the counterpart of the case stated in [9].

THEOREM 0.1 (Stability in L3) . Let u E Ct (L3) be an a priori
global solution to (1). Then,

~ this solution tends to zero at infinity in L3,

. this solution is stable: there exists s(u) such that  c( u),
the local solution v E Ct (L3) to (1) is global, with

We refer to Theorems 1.1, 2.1, 3.1 and 3.2 for precise statements in
the more general Besov setting.

The rest of the paper is organized as follows. In the first section we
study blow-up and persistence of various space-time norms which appear
naturally in constructing the solution. The second section addresses the
behavior at large time of an a priori global solution, and the third section
deals with the stability of such a solution. The fourth and last section is
devoted to a priori estimates for a parabolic equation with lower order

terms, which are of constant use in the previous sections. In the appendix,
we recall several known results on existence and properties of solutions in
Besov spaces. Some of them can be easily derived from the estimates in
the fourth section, and this allows the presentation to be essentially self-
contained.
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1. On the blow-up of strong solutions.

For the convenience of the reader, we recall the usual definition of
Besov spaces.

DEFINITION 1.1. - Let 0 be a function in such that ~ = 1 for
~~~  1 and ~ - 0 for &#x3E; 2, and define Then the

frequency localization operators are defined by

Let f be in S’ (IRn). We say f belongs to if and only if

~ The partial sum Aj ( f ) converges to f as a tempered distri-
bution and after taking the quotient with polynomials if not.p

2022 The sequence Ej = belongs to lq.

We will also need a slight modification of those spaces, taking into
account the time variable; we refer to [7] for the introduction of that type
of space in the context of the Navier-Stokes equations.

DEFINITION 1.2. - Let u(x, t) E and let Aj be a fre-

quency localization with respect to the x variable. We will say that

u E Lp (((a, b), if and only if

and other requirements are the same as in the previous definition. We define

and we will note

Remark 1.1. - In the case when p &#x3E; q one has of course I

Most notably,

In the following we shall note
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The results we prove in the sequel hold for p and q in [1, oo). We shall
actually suppose in all proofs of this paper that p ~ 3 since the other cases
can be deduced from that one.

It is well-known that if we consider the Navier-Stokes equations with
an initial data uo in then there exists a unique local strong solution

(see Theorem A.1 ) . The aim of this section is to prove that as long as this
solution is continuous in time with values in blow-up does not occur.
More precisely, we will prove the following theorem.

THEOREM 1.1. - Let uo E be a divergence free vector-field. Let
u be the local strong solution associated to uo and T* the blow-up time,
i.e.,

u e c([o,~);B~) Vr e Vt  T*

and T* is maximal such that the above relation holds. Then, if T*  oo,

we must necessarily have that

Moreover,

Remark 1.2. - The blow-up time T* is well-defined. Indeed, accord-
ing to Remark A.2 and to the continuity in time of the norms we consider,
the maximal time T* may be chosen to be the blow-up time of one of the
norms with s E (o, 3 ).p, q with p

Remark 1.3. - A well-known continuation (or blow-up) criterion is
the reverse statement (see [5] for the p = 2 case). If u E 

then it can be extended past T, or equivalently, if T is the maximal

time of existence then blows up at time t = T. However,
r

this quantity could possibly blow-up at time T while the solution could
extend in C ([0, T*); for T* &#x3E; T. Theorem 1.1 proves that this cannot

happen.

Proof of Theorem l.l. - We first consider the case T*  oo. It will

be equivalent to prove that if
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then

By Remark A.2, it is sufficient to consider the case

Next, by density of smooth functions in (
there exists some decomposition

such that for all time,

where Kl is the constant of relation (3) below and ~c2 is as smooth as we

want. We now apply the estimate given in Proposition 4.1 to find

for some constant According to relation (2) we have that

which, in turn, implies that

that is

Passing to the limit t - T* we finally get
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which completes the proof in the case s E sp + 2). The general case
s E 2] follows from Remark A.2. This completes the proof in the
case T*  oo.

The case T* = oo follows immediately from the case T*  oo. Indeed,
since we know by hypothesis that lim Ilu(t)IIBsp = 0, there exists T sucht-o P, q

that

where Ko is the constant of Theorem A.1. According to that theorem, we
have that

The previous case implies that

We infer that

and this completes the proof of the theorem. D

It was pointed out to us by J.-Y. Chemin that one could derive
Theorem 1.1 using an abstract argument. Indeed (see also [6]), as it can
be seen from the local existence proof in the Appendix, the local existence
time T is uniform for a compact set of initial data. Applying this result
to the family vo,t = u(t) which is compact as ~([0,T]), one immediately
gets Theorem 1.1. It is however worth noting that such a property is true
in a general setting, independent of the Navier-Stokes equation, and we
therefore frame it in a rather generic way. Consider a semilinear equation

and suppose that if

then the time of existence of (4) is at least T*.

Suppose moreover that for all v E E,
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with E, F Banach spaces and p  oo given. Then we have the following
result.

PROPOSITION 1.1. Let C be a compact set of initial data in E.
Then there exists a uniform time of existence T such that all solutions to

(4) with initial data in C exist up to time T.

Proof of Proposition l.l. - Let us consider an initial data uo. There
exists T such that 

-

and therefore the solution u to (4) exists up to T. Let us take vo such that
~o / 2, from the definition of T and (5), we have

which guarantees that the solution v to (4) with initial data vo exists up
to T. Hence the local time of existence T is uniform in a small ball around

uo, with a radius which is moreover independent of uo. A compact set can
by definition be covered by a finite number of such balls, which ends the
proof. D

Remark 1.4. - In our setting, one has to deal with L~ spaces rather
than just LP, but the same argument applies as well.

2. Large time behaviour of global solutions.

We consider a global in time solution, and are interested by its

asymptotics when t ~ -~oo. For small data, we know (A.2) that the solution
vanishes at infinity. On the other hand, for a weak L2 solution, the energy
is known to decrease to zero at large time. Both phenomenons are linked
to the dissipative nature of the equation, and one is tempted to expect the
same behaviour for any global solution, be it of finite energy or not. The
next theorem proves this is indeed true for any a priori global solution.

To give the reader a sense of perspective, let us consider an a priori
global solution in Ct (L3), but which moreover has an L3 f1 L2 datum. By
weak-strong uniqueness (VonWahl), such a global solution coincides with
the (unique in this case) Leray solution. Hence, it has finite energy, and by
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interpolation,

Therefore the L3 norm of u is necessarily small at some large time T, and
one can conclude from the small data result. Thus, we have proved that
for a global solution which is both a weak and a strong solution (with a
large data), both norms go to zero. This result was already proven in [12],
with an argument which is akin to ours. The proof of the following theorem
relies on a suitable modification of this observation.

THEOREM 2.1. - Let &#x3E; Suppose its
~ 

r

associate solution is global, u E and unique (uniqueness
is guaranteed for instance as soon as ~ 1 for some r E

(2, 2/ ( 1 - 3/p) ), or as in Proposition A.1~. Then

and 1

Remark 2.1. - When the regularity sp is positive, uniqueness in
known to hold without any extra condition, in see [8].
However, when sp  0, one needs some additional condition to even define

the nonlinear term in the equation. The conditions i
one out of many which give uniqueness (from Theorem 1.1, c),.) is
actually enough). Proposition A.1 gives a different meaning to uniqueness,
by somehow renormalizing the solution to reduce to positive regularity. Of
course the unique solution verifies u

Proof of Theorem 2.1. - Assuming the result (6), the second part of
the theorem follows directly from Theorem 1.1. For the sake of simplicity,
all "small" universal constants will be denoted by Eo, which if necessary
can be made smaller from one line to the other.

So all we need is to prove the result (6). We shall use the method
introduced by C. Calderon in [3] to prove results on weak solutions in LP
spaces, and used in [10] in the context of 2D Navier-Stokes equations: we
split the initial data into two parts,
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By the small data theory (Theorem A.1) we know that there is a unique
solution w to the Navier-Stokes equations with data wo, with

and we recall moreover (Proposition A.2) that

Now let us w, which satisfies the following system:

We know that i ) since that result holds
for both u and w. We claim that there exists a time T* &#x3E; 0 such that

The proof of the local regularity Loo([O, T*], L2) is a direct application of
Lemma A.2 and Remark 4.1. The regularity L 2([0, T*], Ill) follows from a
repeated application of Proposition 4.2.

Since we know from (7) that v stays locally in L2 let us now write an
energy estimate in L2 , starting at some time to E (0, T*). Recall that such
an estimate can be entirely derived from the localized energy estimates
on Ajv, as written with great details in [10], Section 3. In our case the
situation is even simpler as all the functions considered in the equation are
in Co (R+, and the computation below estimating
the integral containing v - Vw justifies the fact that the other integral
(containing u - Vv) is zero.

We get
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But

which, using the fact that is uniformly bounded by Eo implies
that

So we get, plugging that estimate into (8),

We now use Gronwall’s lemma, which yields

Now by Sobolev embedding and interpolation we have

which by the above estimate yields

Finally we have obtained

In particular we can write, for all t &#x3E; to + 1,

which can be made arbitrarily small for Eo  2 and t large enough.
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It follows that one can find a time To such that,

and since I we infer that I ~ . We conclude

by the small data theory (Proposition A.2):

and Theorem 2.1 is proved.

3. Stability of global solutions.

We are now in a position to address the stability of an a priori global
solution. We prove that the flow associated to the Navier-Stokes equation
is Lipschitz: perturbating a global solution gives again a global solution,
which moreover stays close to the given one. Note that the first part of
that statement guarantees the set of initial conditions for which a global
solution exists to be open. The second part, which is stability, is actually
a stronger property.

. 3 _
THEOREM 3.1. Let uo c B£q 

1 
be a divergence free vector fields,

3 _ 
.

generating a global solution u, continuous in Bppq - Suppose that this
is (the extension of) the solution obtained by fixed point on a small
time interval, or that this solution is the unique solution in the sense of
Proposition A.l.

Then there is an qo (depending on p, q, for some
- 

,-- /

such that for any divergence free vector field vo E

satisfying , its associate solution v satisfies, for

with

where Cu depends on p, q and



1399

Remark 3.1. In [19], stability is proved for H1 datum, under
an additional assumption, namely it is required that 4  oo.

For L3 datum, stability is derived in [12], under the assumption u E
L3 ), where the Co notation refers to continuous functions u such

that = 0. Here, we dispense ourselves with such a priori
assumptions, using the results of Section 2. Moreover, we work in scaling
invariant norms, superceding both type of previous results.

Exactly as in the small data theory, one can dissociate the norm in
which the smallness assumption is made and the regularity of the data. We
will only state a case which is of particular interest, but the proof can be

taylored to replace L3 by virtually any space in the scales n;,q or Fp,q (the
Triebel-Lizorkin spaces), not necessarily scale-invariant with respect to the
Navier-Stokes equations (heuristically it can be regarded as a byproduct of
the "propagation of regularity" lemma from the appendix).

THEOREM 3.2. - Let u and v be as in Theorem 3.1. Suppose moreover
that uo, vo c L3. Then both solutions are global in L3, and

where Cu depends on IIuol13 and Cu from (9).

Proof of Theorem 3.1. - Consider a divergence free vector field uo E
- ~ ..

generating a global solutions Under the assump-
tions of the theorem, we know that

for all see Theorem 2.1 ) .

Now let i be another divergence free vector field. Its

associate solution, which a priori only has a finite life span, is called v,
and we have

for all r E [1, +oo] and for some time T &#x3E; 0.

We fix for the rest of the proof some r E (2,2/(1 - 3/p)) so that
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If w is defined by ~ , then it is enough to prove that
small enough,

The function w satisfies the following system:

We deduce from Proposition 4.1 that w satisfies the following estimate:

for some constant K2 &#x3E; 1 and all times a and {3. The constant s’ is arbitrary
in s] and r’ is determined by s’ = sp + -9-.

We claim that there exist N real numbers (Ti ) l,iN such that T1 = 0
and TN = -~oo, satisfying

Let us prove that statement. Recall that since q  +oo, we have

so there exists some integer M such that u satisfies

Then to obtain the desired time decomposition for u - uM, we use the fact
that r  +oo and that one is only summing over a finite number of j’s.
The result (12) follows.
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Now let us go back to the proof of the theorem. Suppose that

By time continuity we can define a maximal time T E R+ U such that

If T = 00 then the theorem is proved as a consequence of Remark

A.2. Suppose now that T  +oo. Then we can define an integer E
~ 1, ... , N - 1 ~ such that

and plugging (12) and (14) into (11) with s’ - s we get for any i  1~ - 1,

so finally

From relation (11) with s’ = sp we also get

that is

Since

A trivial induction now shows that
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We conclude from (15) and (16) that

and

for k - 1. The same arguments as above also apply on the interval

[Tk, T] and yield

and

Next, denoting 3 one has

Under assumption (13) this contradicts the maximality of T as defined
in (14). So the theorem is proved. D

Note that one has moreover an estimate of the type

for r E (2,2/(1 - 3/p)). This follows from the remark that in the case
the integer N can be chosen of size equivalent

)imilar estimates hold for the other

norms of w.

s

Remark 3.2. - In the case when uo E with q = +oo, the result
still holds under the condition that uo is in the closure in S’ (II~3 ) of smooth
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functions for the norm. All the computations above indeed hold
for q = +oo, up to the proof of (12), for which that additional assumption
is needed.

Proof of Theorem 3.2. - One cannot apply directly Theorem 3.1 to
L3 datum. Indeed, one needs to use the embedding L 3 0 prove
stability there, and then recover an L3 estimate, as explained in [18]. Here
we proceed exactly in the same way, taking advantage of the estimates
developped in the Appendix. Once our solution v has been proved to be
stable in it can be decomposed as v = S(t)vo+ ¿l 
where rv E Ct (L3) and S(t)vo is the linear flow. Since we moreover assumed
vo E L3, taking the difference between this decomposition for v and the
similar one for u, we deduce (10), since in all multilinear operators involving
the linear parts we can choose all entries to be in except for
the S(t)(uo - vo) which we see as an L3 function. The difference between
remainders is bounded by the difference of the data in the large Besov
space, and hence by the difference in L3 by Sobolev embedding. 0

4. Estimates for parabolic equations.

In the previous sections, we were brought to writing a priori estimates
for the Navier-Stokes equation as well as for the linearized equation around
a given vector field. The aim of this section is to prove such estimates in
the following setting:

Let us note right away that in the non blow-up result we set v = 0 and
~c = w = v = ul -i- u2 was some decomposition of w, while for the stability
theorem we required v = w and u = w + U, where U was a solution of the
Navier-Stokes equations.

4.1. A priori estimates.

The main result of this section is the following proposition. We only
elected to state the results we needed previously, but it should be clear from
the proof that we have not stated all possible estimates in their greatest
generality. Let us note that estimates in Lp-type spaces have been proved
by M. Vishik in [21], in the context of the Euler equations.
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PROPOSITION 4.1. - Let sp be the regularity of the initial data

and consider s E [sp, sp + 2] and r E [1, 00] such that

Let w be a solution of system (17). Then the following relation holds:

under the following assumptions:

and

Also, relations similar to (21) and (22) with primes on si, ri and qi must
hold plus the additional restriction

We also used in Section 2 some estimates in "energy spaces". These
are included in the next proposition.

PROPOSITION 4.2. - We set again , and

r E be such that s - ~’ Let w be a solution of system sist-mod.
Then the following relation holds:

under the following assumptions:
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and

Also, relations similar to (24~ and (25) with primes on si and ri must hold
plus the additional restriction

Proof of Proposition 4.1. - Let us start by giving an idea of the
proof. An estimate in LP would consist simply in multiplying the equation
by Iw/p-2w and integrating. Then there is only the term v. B7v to consider,
and one notes that the derivative is on v. In the case of Besov spaces of

course one first has to localize in frequency space using the operators Aj,
and the u - Vw term no longer disappears after integration. Most of the
work in the following consists in proving that one can nevertheless shift
the derivative on u, using commutator estimates (which will appear in the
following section).

We apply the operator P, the orthogonal projection on divergence free
vector fields, to the equation. Then

Now let i e {1,2,3} be given, and define as the i-th coordinate

of any vector field f. Let Aj be the usual Littlewood-Paley operator and
define

Then by the "modified Poincaré lemma" ([17]) we have

where we have defined 11 It follows that
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Summing on i we get

where F~ is such that

We deduce that

Gronwall’s lemma now gives

where the sign * denotes the convolution of functions defined on Il~+ . We
now multiply by 2j’ and take the L’~ (0, T) norm to obtain

where we have used Young’s inequality and

We now use that

to obtain

According to (18) and (19), taking the lq norm in (29) yields



1407

Applying Lemma 4.1 with p = p, we infer that

provided that

and that similar relations with primes on si, ri and qi hold plus the
additional restriction

Taking into account the fact that r’ and r" must belong to 
we finally end up with the announced restrictions (21), (22) and (23).
Relation (20) follows from relations (30) and (31). This completes the proof
of Proposition 4.1. 0

Proof of Proposition 4.2. - This proof follows closely the previous
one, up to some obvious changes. We will therefore omit the details and
just point out the main steps.

First, we rewrite relation (27) for p = 2:

where

and Fj is defined by (26) with p = 2. Explicitly computing the two norms
of exponential functions above and taking the f2 norm in (32) yields

Applying Lemma 4.1 with
finally gives
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provided that

and that similar relations with primes on si and ri hold plus the additional
restriction

As in the previous proof, the fact that r’ and r" must belong to [1, 00]
implies the restrictions announced in the statement. This completes the

proof. D

Remark 4.1. As a byproduct of Propositions 4.1 and 4.2 we get
the following estimates for the standard bilinear term of the Navier-Stokes
equations. Denoting by ,S’(t) the semigroup associated to the heat equation,
the bilinear operator

satisfies the estimates

and

where

The proof of this remark follows immediately from Propositions 4.1
and 4.2 once we have noticed that w = B(v, v) verifies the system

4.2. Estimate of convective terms.

In this section, we shall state and prove a lemma enabling one to
estimate the convective terms in (17). The main difficulty in the statement
of Proposition 4.1 is to obtain the extended range 82 close to sp + 2. This

corresponds to the first term below, and one immediately observes the
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difference between this term and the second one: in the first term the

derivative does not fall on a, and we will have to take advantage of the
frequency localization as well as of the structure to reduce this "bad" term
to a "good" one, like the second one. Indeed this second term can be directly
estimated by standard product rules and Holder, estimating in effect the
L1 norm of the function under the integral sign.

LEMMA 4.1. Let a, a and b be divergence free vector fields. The
following relations hold true:

with

and

where p, p, r, ri, q and qi are elements of ~1, oo~ and s and si are real
numbers satisfying

Similar relations must hold with primes on si, ri, qi and the additional

relation must also be true: 
-

Proof of Lemma 4.1. - It turns out that the first term is the most

difficult to estimate, and the other will be obtained by using parts of the
computations of the first one. Here, ideally one would like the derivative to
be on the low frequency term, If one ignores and set j = j’,
then one can integrate by parts to achieve this. In effect, combining this
remark with a commutator estimate, we will be able to do so.
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Let us start by estimating the term

where denotes the vector field with coordinates

According to J.-M. Bony’s paraproduct algorithm [2], we have

So we can decompose I into three parts, defining

and

and we shall estimate those terms successively. The most tricky one is again
the first one. Let us denote by Ll ¡(l)öl = f . V, Id is the identity matrix,
and recall that P is a matrix operator such that Pb = b:
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We used above that . The notation [A, B] denotes
the commutator ot the operators A et B. ’lo estimate l.1.1, we need a
commutator estimate. One can forget about the matrices and perform a

scalar estimate. Hence we need an estimate on the scalar commutator
where 0~ stands for 0~ or depending on which

entry in the P matrix we pick. In either case, Aj is the convolution by a
smooth function of the form We then use the following lemma.

Proof of Lemma 4.2. - Since one writes

Then

and we conclude by Young’s inequality that

since . This ends the proof of Lemma 4.2. D

Coming back to the term I.l.l, we apply Holder’s inequality and
Lemma 4.2: using the fact that 13 - j’ ~  2, we essentially have to prove
that

So to prove the desired result, all we need to do is to check that
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can be estimated in the following way:

with aj a sequence of norm 1. But we have, by Holder’s inequality,

so it follows by Bernstein’s inequality that

Then under the condition

we can apply Young inequality to get

where aj, (3j are normalized Zql, lq2 sequences. We conclude for the term 1. 1. 1
by Holder ; the sequence aj is in fact in fql2 with q12 = hence

in tq for any q &#x3E; q12.

For I.1.2, we notice that since a is divergence free, an integration by
parts implies that I.1.2 = 0 (remark however that should we forget the
divergence free condition on this term, integration by parts would lead to
a "good" term, with the derivative on the low frequencies).

Finally we consider the term I.1.3, for which we just need to notice
that since 2, the term is a sum of with 

So the term 1.1.3 can be added to 1.3 and we do so implicitly. So finally
we have proved the result for I.1.

Now let us estimate the term 1.2. Holder’s inequality together with
the continuity of P enables us to write, 2,
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where -1/p = 1 1- -I- - Without loss of generality one can only consider thep p PI

term j = j’, so we just need to check that

satisfies

By H61der’s and Bernstein’s inequality,

So the result follows for 1.2 by Young’s inequality.

Finally let us estimate 1.3. Since a is divergence free, we have

so by Bernstein’s inequality, continuity of P and Holder’s inequality we get

where It follows, 2, that we essentially need
to prove that
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satisfies

But we have

and the result follows by Young’s inequality under the condition that s, +
s2 &#x3E; 0.

Finally we obtained the expected estimate for I. Now we consider the
second term to estimate,

We shall show that II can be estimated along the same lines as I, in fact in
a much simpler way. One can forget about the vector structure, and perform
scalar estimates. More precisely, we use the continuity of the projector P
and Holder inequality to obtain

so it is enough to estimate the LT norm of Va)llp. More precisely
we shall prove that

As usual we decompose the product into three parts, and we need to
estimate

and
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Note that in the remainder term, we have taken advantage of the fact that a
is divergence free to put the space derivative outside the product. The first
paraproduct term II.1 is the only one we really have to deal with, as the
two others were studied previously: we have indeed

so the result for II.2 is found using the previous estimate (34) on F~ .
Similarly we have

so one estimates 11.3 using the estimate for F~ defined in (36).
Finally let us estimate II.1. We simply write

with , which implies by Bernstein’s inequality that

so finally

which proves the result under the condition s’2 3/p.
This completes the proof of Lemma 4.1.



1416

Appendix.

For the sake of completeness, we give in this appendix proofs of several
results which can all be found, though perhaps under different formulations,
in the literature on Navier-Stokes. As a matter of fact, we reproduce here
the proof of the existence in (Theorem A.1 ) which can be found in [6].
The only new result is Proposition A.1, but the ideas behind it have been
used extensively before ([16], [8], [4]). We feel however that there exists no
reference providing these results in a unified framework, hence the short
recollection given here might be of help to the reader.

3

THEOREM A.1. - Let uo E be a divergence free vector field.
There exists a unique local in time solution to (1) such that

Moreover, there exists a constant Ko such that Ko, then we
p,q

can choose T = +oo.

Remark A.1. - In (1), we have set the viscosity v = 1. Scaling allows
to recover all values of v. As usual, we could track the dependence on v of
the constant Ko to see that Ko can be chosen of the form Ko = Kov, with
Ko independent of v.

Remark A.2. - To prove Theorem A.1, it is sufficient to control one
with s’ E (0, ~) in order to control all those

, Moreover, the control of the norms

implies the control of all those norms for

Proof of Remark A.2. Consider first the case s’ e (0, ~). One can
use the estimate of Proposition 4.1 to get an estimate for the norms L’TB;,q
for all Reapplying Proposition 4.1 with the new set of
indices [sp, 2s’ - sp] and so on yields the result.

The case s’ &#x3E; 1 follows immediately from the case s’ E (0, 3/p) byp p

interpolating the spaces

Proof of Theorem A. 1. - Such a theorem can be proved with a priori
estimates, regularizing and taking the limit. Or one can set up a fixed point
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in an appropriate Banach space. We take the opportunity to recall this
approach and cast it in an abstract setting. In doing so we reduce ourselves
to proving a priori estimates on the nonlinear term. We state two lemmas:

LEMMA A.1 (Existence and uniqueness). - Let X be a Banach space,
L a linear operator from X - X such that a constant A  1 exists such

that

B a bilinear operator such that

then, for all Xl E X such that

the sequence defined by

converges in X towards the unique solution of

such that

The proof is an elementary exercise: first prove the sequence Ilxn Ilx to
be uniformly bounded, then prove the convergence of the telescopic series

which gives J

The next lemma allows to propagate additional information on the

datum, provided the operators B, L behave nicely with respect to the norm
encoding this information.

LEMMA A.2 (Propagation of regularity). - Let x be the solution from
the previous lemma, and assume moreover that xl E E for some Banach
space E, and L, B are such that
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and

with M  1 and r¡(1- A)  (1- M)ry. Then the solution x belongs to E, and

The proof of this second lemma is again elementary: prove the

boundedness and then the convergence of the sequence xn in E.

Let go back to the proof of Theorem A.1, and let us prove the

global existence for small initial data. We have to solve the equation
x = S(t)uo -f- B(x, x) (see Remark 4.1 for the notation). We choose some
s = sp + ~ E (0, sp + 1) and set X = Lr 00 Bp’ q and L = 0. Bicontinuity
for the operator B in the space X follows from Remark 4.1. Next, we
check that x, = 8(t)uo E X, which is a direct consequence of (20) (with
u = v = 0), namely

From Lemma A.1 this gives existence (and uniqueness in a ball) for small
data. We then deduce from Remark A.2 that all other norms are

also bounded.

Local existence follows from the remark that relation (37) can actually
be improved to

This improved estimate can be easily deduced from relations (27) and (28).
Next, an application of Lebesgue’s dominated convergence theorem shows

We deduce that for given 6’c a time T = T(co) exists such that

From this point we can continue as in the proof of the small initial data
case and infer that for Eo small enough the local strong solution exists at
least up to the time T(Eo).
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We are now left with the proof of uniqueness. Fix again s C (0, sp + 1),
let u and u be two strong solutions with the same initial data and set
w = u - u. Applying again the basic estimate (20) we get that

for some constant K3. We infer that

By continuity of the norm of . with respect to the time, there exists
T such that

Therefore, for t E [0, T] relation (38) can hold only vanishes,
that is if w vanishes on [0, T]. This proves local uniqueness and, by
continuity, global uniqueness too. D

As pointed out earlier, when sp  0, there is no easy way to

define uniqueness in since u2 may not be defined even in the
distributional sense. One can however take advantage of the regularizing
effect, to obtain the following result:

sPROPOSITION A.1. Let uo c Then there exist N E N and

N multilinear operators Bl such that the local solution to (1) can be
decomposed as

where Bl is of order 1 and is unique.

Remark A.3. - Such an expansion could be refined, to obtain a

remainder in b2, , (or even better if one is willing to consider p, q  1).

Proof of Proposition A.l. Recall that if we write the equation
in integral form (which, in our setting, can be done after frequency
localisation, to have an infinite set of equations with smooth solutions),
we have u - S(t)uo + B(u, u). To make notations simpler, let us call
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ui = S(t)uo, and B2 = B. One can replace u in by ul + B2 (u, u),
and iterate. Obviously one obtains a multilinear expansion, with multilinear
operators of increasing order. For example, B3 - +

If we order these multilinear operators in increasing
order up to order N, with N arbitrary, we get

where Bi is multilinear of order i, and r itself is a finite sum of N multilinear

operators of order N + 1, with M entries being ul and N + 1 - M being
u, for 0  M x N. We will denote these operators generically as BN+1 -
One could of course write such a decomposition explicitly, but it does not
provide any useful information, as one needs only to remember that for
all 2  i x N + 1, Bi is of order i and is a iterate of B2. Now, recall
that u, ~ Consider B2 (x, y), where x, y are
indifferently u, U1. From product rules, using the Lt° information for the
low frequencies (as sp  0) and the L~ information for high frequencies
(and as sp + sp + 2 &#x3E; 0, the high-high frequencies interactions are dealt
with in the same way), we obtain that x (~) ~/ E Lt (Bp~2,q~2), with

Then, using the bicontinuity of the operator B as proved in Proposition
4.1 (see also Remark 4.1), we get

One can iterate these estimates, to obtain

At this point, to avoid any unpleasantness with indices less than one,
we suppose p = q. There is no loss in generality, as one can consider
P = sup(p, q) and simply use . Then we stop the expansion
as soon as 1  p/ (N +1) ~ 2. This ensures that E and by
embedding, rN+l E Ct (L3). From there, uniqueness follows in
the standard way, from
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Here L3~°° denotes weak L3, and ~3 . is the Besov space constructed
on weak L3~2. Since after taking differences
between two solutions with remainders rN+1 and rN+1 one concludes
IlrN+1 - = 0. We ignored entries in the remainders which have
at least one U1 factor, since they are easier to treat (just use an Lt on such
a factor, which will guarantee its smallness for a small time interval). This
ends the proof. 0

For the sake of completeness, we now proceed to prove two other
useful properties which have been used in Section 3.

PROPOSITION A.2. - Let u be the small solution constructed by
Theorem A.1. Then,

~ u is such that

9 and moreover

We remark that we could have actually encoded both informations in
the definition of our space X where the fixed point is proved. However, we
feel it is of interest to see they can be recovered afterward.

Proof of Proposition A.2. - Let us start with the first one. We first

prove an intermediate step, defining a Banach space Gp with norm

and prove

One can prove, using the spatial decay of the convolution kernel appearing
in &#x26;2 ([16]),

which ensures that in the decomposition (39) all Bi for 2 ~ i x N belong
to Gp, since ] One has then to consider the remainder

rN+1. For this term, we simply use

which follows again from the decay of the kernel. Remark that in order to
avoid a 1/s weight in these last two estimates on B2 we are forced to prove
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the intermediate result for p  oo. Hence, we have u = up + where

up E Gp and rN+l C L(X)(L3). Therefore,

and combining the two previous bicontinuity estimates and Lemma A.2,
with L = B(up,.) + B(., up), we obtain the desired result, rN+1 E Gp,
provided we take the constant Ko small enough (possibly smaller than in
the proof of Theorem A.1, but we never need a precise estimate on the size
of Ko throughout the rest of the paper). One then recovers u E Goo since

We are left with the limit when t - oo. This property is true for the linear

term, as

and for N large the remainder can be bounded uniformly in time in 
by the reminder, , which goes to zero with N; then
at fixed N the first sum goes to zero for large time as a finite sum.
Now, consider the nonlinear term, B with

f = PV . (u ø u). Split the integral in two,

Since we have an Lt information on f, the second part will obviously be
as small as we want for large T. Then the first part can be rewritten as

S(t - T) fo S(T - s) f (s)ds, for which one can proceed as for the linear
part. 0
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