[La distribution des nœuds sur les courbes algébriques de ]
Soit une variété algébrique de dimension 1 de . On note la dimension de l’espace vectoriel complexe des restrictions à des polynmôes holomorphes de degré . On considère un compact non polaire et pour chaque on choisit points (nœuds) dans . Enfin, on note la constante de Lebesgue d’ordre associée aux noeuds : cette constante est la norme de l’opérateur sur , où est le polynôme d’interpolation de Lagrange de , de degré , aux points . Nous utilisons la théorie du pluripotentiel pour montrer qu’il existe une mesure portée par , de masse totale égale à 1, et telle que pour n’importe quels noyaux sur vérifiant , les mesures discrètes convergent faiblement vers .
Given an irreducible algebraic curves in , let be the dimension of the complex vector space of all holomorphic polynomials of degree at most restricted to . Let be a nonpolar compact subset of , and for each choose points in . Finally, let be the -th Lebesgue constant of the array ; i.e., is the operator norm of the Lagrange interpolation operator acting on , where is the Lagrange interpolating polynomial for of degree at the points . Using techniques of pluripotential theory, we show that there is a probability measure supported on such that for any array in satisfying , the discrete measures converge weak- to .
Keywords: algebraic curve, Lebesgue constant
Mot clés : courbe algébrique, constante de Lebesgue
Bloom, Thomas 1 ; Levenberg, Norman 2
@article{AIF_2003__53_5_1365_0, author = {Bloom, Thomas and Levenberg, Norman}, title = {Distribution of nodes on algebraic curves in ${\mathbb {C}}^N$}, journal = {Annales de l'Institut Fourier}, pages = {1365--1385}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {53}, number = {5}, year = {2003}, doi = {10.5802/aif.1982}, zbl = {1044.32026}, mrnumber = {2032937}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1982/} }
TY - JOUR AU - Bloom, Thomas AU - Levenberg, Norman TI - Distribution of nodes on algebraic curves in ${\mathbb {C}}^N$ JO - Annales de l'Institut Fourier PY - 2003 SP - 1365 EP - 1385 VL - 53 IS - 5 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1982/ DO - 10.5802/aif.1982 LA - en ID - AIF_2003__53_5_1365_0 ER -
%0 Journal Article %A Bloom, Thomas %A Levenberg, Norman %T Distribution of nodes on algebraic curves in ${\mathbb {C}}^N$ %J Annales de l'Institut Fourier %D 2003 %P 1365-1385 %V 53 %N 5 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.1982/ %R 10.5802/aif.1982 %G en %F AIF_2003__53_5_1365_0
Bloom, Thomas; Levenberg, Norman. Distribution of nodes on algebraic curves in ${\mathbb {C}}^N$. Annales de l'Institut Fourier, Tome 53 (2003) no. 5, pp. 1365-1385. doi : 10.5802/aif.1982. https://aif.centre-mersenne.org/articles/10.5802/aif.1982/
[BBCL] Polynomial interpolation of holomorphic functions in and , Rocky Mtn. J. Math, Volume 22 (1992) no. 2, pp. 441-470 | DOI | MR | Zbl
[Be] The operator on complex spaces, Séminaire Pierre Lelong-Henri Skoda 1980-1981 et Colloque de Wimereux, Mai 1981 (Lecture Notes in Math.), Volume 919 (1982), pp. 294-323 | Zbl
[BLMT] Tangential Markov Inequalities Characterize Algebraic Submanifolds of , Indiana J. Math, Volume 44 (1995) no. 1, pp. 115-138 | MR | Zbl
[D] Mesures de Monge-Ampère et caractérisation géométrique des variétés algébriques affines, Bull. de la Soc. Math. de France, Volume 113, Fasc. 2 (1985) no. 19, pp. 1-125 | Numdam | MR | Zbl
[DG] Levisches problem und rungescher Satz für teilgebiete Steinscher Mannigfaltigkeiten (German), Math. Ann, Volume 140 (1960), pp. 94-123 | DOI | MR | Zbl
[GMS] Asymptotic distribution of nodes for near-optimal polynomial interpolation on certain curves in , Constructive Approximation, Volume 18 (2002) no. 2, pp. 255-284 | DOI | MR | Zbl
[H] Notions of Convexity, Birkhäuser, Boston, 1994 | MR | Zbl
[K] Pluripotential Theory, Clarendon Press, Oxford, 1991 | MR | Zbl
[Kr] Function Theory of Several Complex Variables, Wiley, New York, 1982 | MR | Zbl
[Ru] A geometric criterion for algebraic varieties, J. Math. Mech, Volume 20 (1968) no. 7, pp. 671-683 | MR | Zbl
[Sa1] An estimate for polynomials on analytic sets, Math. USSR Izvestiya, Volume 20 (1983) no. 3, pp. 493-502 | DOI | MR | Zbl
[Sa2] Extension of plurisubharmonic functions from a submanifold, (Russian), Dokl. Akad. Nauk UzSSR, Volume 5 (1982), pp. 3-4 | MR | Zbl
[T] An estimate for an extremal plurisubharmonic function on , Séminaire P. Lelong, P. Dolbeault, H. Skoda, Année 1982/1983 (Lecture Notes in Math.), Volume 1028 (1983), pp. 318-328 | Zbl
[Ze] Fonction de Green pluricomplex à pôle à l'infini sur un espace de Stein parabolique et applications, Math. Scand, Volume 69 (1991), pp. 89-126 | MR | Zbl
Cité par Sources :