On the Jung method in positive characteristic
Annales de l'Institut Fourier, Volume 53 (2003) no. 4, pp. 1237-1258.

Let X ¯ be a germ of normal surface with local ring R ¯ covering a germ of regular surface X with local ring R of characteristic p>0. Given an extension of valuation rings W/V birationally dominating R ¯/R, we study the existence of a new such pair of local rings R ¯ ' /R ' birationally dominating R ¯/R, such that R ' is regular and R ¯ ' has only toric singularities. This is achieved when W/V is defectless or when [W:V] is equal to p

Soit X ¯ un germe de surface normale d’anneau local R ¯ revêtant un germe de surface régulière X d’anneau local R de caractéristique p>0. Étant donnée une extension d’anneaux de valuation W/V dominant birationnellement R ¯/R, nous étudions l’existence d’une nouvelle paire d’anneaux locaux R ¯ ' /R ' dominant birationnellement R ¯/R, telle que R ' soit régulier et que R ¯ ' n’ait que des singularités toriques. Cette dernière est construite lorsque W/V est sans défaut ou lorsque le degré [W:V] est p.

DOI: 10.5802/aif.1978
Classification: 13A18, 14E22, 14J17
Keywords: valuations, coverings, resolution of singularities
Mot clés : valuations, revêtements, résolution des singularités

Piltant, Olivier 1

1 Université de Versailles, LAMA--UMR 8100 du CNRS, 45 avenue des États-Unis, Bâtiment Fermat, 78035 Versailles (France)
@article{AIF_2003__53_4_1237_0,
     author = {Piltant, Olivier},
     title = {On the {Jung} method in positive characteristic},
     journal = {Annales de l'Institut Fourier},
     pages = {1237--1258},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {53},
     number = {4},
     year = {2003},
     doi = {10.5802/aif.1978},
     zbl = {1078.14018},
     mrnumber = {2033514},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1978/}
}
TY  - JOUR
AU  - Piltant, Olivier
TI  - On the Jung method in positive characteristic
JO  - Annales de l'Institut Fourier
PY  - 2003
SP  - 1237
EP  - 1258
VL  - 53
IS  - 4
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.1978/
DO  - 10.5802/aif.1978
LA  - en
ID  - AIF_2003__53_4_1237_0
ER  - 
%0 Journal Article
%A Piltant, Olivier
%T On the Jung method in positive characteristic
%J Annales de l'Institut Fourier
%D 2003
%P 1237-1258
%V 53
%N 4
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.1978/
%R 10.5802/aif.1978
%G en
%F AIF_2003__53_4_1237_0
Piltant, Olivier. On the Jung method in positive characteristic. Annales de l'Institut Fourier, Volume 53 (2003) no. 4, pp. 1237-1258. doi : 10.5802/aif.1978. https://aif.centre-mersenne.org/articles/10.5802/aif.1978/

[1] S. Abhyankar On the ramification of algebraic functions, Amer. J. Math, Volume 77 (1955), pp. 575-592 | DOI | MR | Zbl

[2] S. Abhyankar Local uniformization on algebraic surfaces over ground fields of characteristic p0, Ann. Math., Volume 63 (1956), pp. 491-526 | DOI | MR | Zbl

[3] S. Abhyankar On the valuations centered in a local domain, Amer. J. Math, Volume 78 (1956), pp. 321-348 | DOI | MR | Zbl

[4] S. Abhyankar Simultaneous resolution for algebraic surfaces, Amer. J. Math, Volume 78 (1956), pp. 761-790 | DOI | MR | Zbl

[5] S. Abhyankar Ramification theoretic methods in algebraic geometry, Annals of Math. Studies, 43, Princeton University Press, 1959 | MR | Zbl

[6] S. Abhyankar Tame Coverings and fundamental groups of algebraic varieties, Amer. J. Math, Volume 81 (1959), pp. 46-94 | DOI | MR | Zbl

[7] D. Abramovich; A. J. de Jong Smoothness, semistability and toroidal geometry, J. Alg. Geom., Volume 6 (1997), pp. 789-801 | MR | Zbl

[8] F. Bogomolov; T. Pantev Weak Hironaka theorem, Math. Res. Lett., Volume 3 (1996), pp. 299-307 | MR | Zbl

[9] S.D. Cutkosky Local factorization and monomialization of morphisms, Astérisque, Volume 260 (1999) | MR | Zbl

[10] S.D. Cutkosky Simultaneous resolution of singularities, Proc. Amer. Math. Soc, Volume 128 (2000), pp. 1905-1910 | DOI | MR | Zbl

[11] S.D. Cutkosky Generically finite morphisms and simultaneous resolution of singularities (2001) (to appear in Contemporary Math) | MR | Zbl

[12] S.D. Cutkosky; O. Piltant Monomial resolutions of morphisms of algebraic surfaces. In honor of R. Hartshorne, Comm. Alg, Volume 28 (2000) no. 12, pp. 5935-5959 | DOI | MR | Zbl

[13] S.D. Cutkosky; O. Piltant Ramification of valuations (2002) (to appear in Adv. Math.) | MR | Zbl

[14] A. Grothendieck Revêtements étales et groupe fondamental, Lect. Notes Math., 224, Springer Verlag, 1971 | MR | Zbl

[15] A. Grothendieck; J.P. Murre The tame fundamental group of a formal neighbourhood of a divisor with normal crossings on a scheme, Lect. Notes Math, 208, Springer-Verlag, 1971 | MR | Zbl

[16] R. Hartshorne Algebraic geometry, Graduate Texts in Math, 52, Springer-Verlag, 1977 | MR | Zbl

[17] A. J. de Jong Smoothness, semistability and alterations, Publ. Math. IHES, Volume 83 (1996), pp. 51-93 | EuDML | Numdam | Zbl

[18] H. Jung Darstellung der Funktionen eines algebraischen Körpers zweier unabhängigen Veränderlichen in der Umgebung einer Stelle, Journal für Mathematik, Volume 133 (1908), pp. 289-314 | EuDML | JFM

[19] G. Kempf; F. Knudsen; D. Mumford; B. Saint-Donat Toroidal embeddings I, Lect. Notes Math., 339, Springer Verlag, 1973 | MR | Zbl

[20] H. Knaf; and F.V. Kuhlmann Abhyankar places admit local uniformization in any characteristic (2001) (preprint Valuation Theory homepage, http://math.usask.ca) | Zbl

[21] W. Krull Galoissche Theorie bewerteter Körper, Sitzungsbereichte der Bayerschen Akademie der Wissenschaften, München (1930), pp. 225-238 | JFM

[22] F.V. Kuhlmann On local uniformization in arbitary characteristic I (2000) (preprint Valuation Theory homepage, http://math.usask.ca) | MR

[23] J. Lipman Rational singularities with applications to algebraic surfaces and unique factorization, Publ. Math. IHES, Volume 36 (1969), pp. 195-279 | EuDML | Numdam | MR | Zbl

[24] J. Lipman Introduction to resolution of singularities, Algebraic Geometry, Arcata, 1974 (AMS Proc. Symp. Pure Math), Volume 29 (1975), pp. 187-230 | Zbl

[25] M. Spivakovsky Sandwiched singularities and desingularization of surfaces by normalized Nash transformations, Ann. Math, Volume 131 (1990), pp. 411-491 | DOI | MR | Zbl

[26] O. Zariski; P. Samuel Commutative Algebra I, Graduate Texts in Math, 28, Springer Verlag, 1958 | Zbl

[27] O. Zariski; P. Samuel Commutative Algebra II, The Univ. Series in Higher Math., Van Nostrand, Princeton, 1960 | MR | Zbl

Cited by Sources: