[Anneaux de cohomologie des espaces de bipolynômes génériques et groupes de Weyl affines étendus de la série ]
Un bipolynôme est une application holomorphe d’une sphère dans une sphère telle qu’un des points de la sphère image ait exactement deux préimages. Les invariants topologiques de l’espace des bipolynômes sans racines multiples sont reliés aux classes caractéristiques des fonctions rationnelles avec deux pôles et aux groupes de tresses généralisés associés aux extensions des groupes de Weyl affines de la série . Nous prouvons que les anneaux de cohomologie de l’espace des bipolynômes de bidegré se stabilisent quand tend vers l’infini et que les anneaux stables correspondant à différents se stabilisent quand tend vers l’infini. De plus nous prouvons un analogue de la décomposition de Snaith pour les groupes de cohomologie stables. Les deux premiers termes de la suite d’anneaux de cohomologie stable sont les mêmes que pour les singularités simples de types et . Les autres termes sont encore inconnus.
A bipolynomial is a holomorphic mapping of a sphere onto a sphere such that some point on the target sphere has exactly two preimages. The topological invariants of spaces of bipolynomials without multiple roots are connected with characteristic classes of rational functions with two poles and generalized braid groups associated to extended affine Weyl groups of the serie . We prove that the cohomology rings of the spaces of bipolynomials of bidegree stabilize as tends to infinity and that the stable cohomology rings obtained for different also stabilize as tends to infinity. Moreover we prove an analog of Snaith splitting formula for the stable cohomology groups. The first terms of the sequence of stable cohomology rings are the same as the stable cohomology rings of the simple singularities of types and . Other terms of the sequence are still unknown.
Keywords: extended affine Weyl groups, bipolynomials, rational functions, stable cohomology rings
Mot clés : groupes de Weyl affines étendus, bipolynômes, fonctions rationnelles, anneaux de cohomologie stable
Napolitano, Fabien 1
@article{AIF_2003__53_3_927_0, author = {Napolitano, Fabien}, title = {Cohomology rings of spaces of generic bipolynomials and extended affine {Weyl} groups of serie $A$}, journal = {Annales de l'Institut Fourier}, pages = {927--940}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {53}, number = {3}, year = {2003}, doi = {10.5802/aif.1966}, zbl = {1030.55012}, mrnumber = {2008447}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1966/} }
TY - JOUR AU - Napolitano, Fabien TI - Cohomology rings of spaces of generic bipolynomials and extended affine Weyl groups of serie $A$ JO - Annales de l'Institut Fourier PY - 2003 SP - 927 EP - 940 VL - 53 IS - 3 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1966/ DO - 10.5802/aif.1966 LA - en ID - AIF_2003__53_3_927_0 ER -
%0 Journal Article %A Napolitano, Fabien %T Cohomology rings of spaces of generic bipolynomials and extended affine Weyl groups of serie $A$ %J Annales de l'Institut Fourier %D 2003 %P 927-940 %V 53 %N 3 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.1966/ %R 10.5802/aif.1966 %G en %F AIF_2003__53_3_927_0
Napolitano, Fabien. Cohomology rings of spaces of generic bipolynomials and extended affine Weyl groups of serie $A$. Annales de l'Institut Fourier, Tome 53 (2003) no. 3, pp. 927-940. doi : 10.5802/aif.1966. https://aif.centre-mersenne.org/articles/10.5802/aif.1966/
[Arn70a] On some topological invariants of algebraic functions, Trans. Moscow Math. Soc., Volume 21 (1970), pp. 30-52 | MR | Zbl
[Arn70b] Topological invariants of algebraic functions II, Funct. Anal. Appl., Volume 2 (1970), pp. 91-98 | DOI | MR | Zbl
[Arn78] Critical points of functions on a manifold with boundary, the simple Lie groups , and and singularities of evolutes, Russian Math. Surveys, Volume 33 (1978) no. 5, pp. 99-116 | DOI | MR | Zbl
[Arn96] Topological Classification of Trigonometric Polynomials and Combinatorics of Graphs with an Equal Number of Vertices and Edges, Funct. Anal. Appl., Volume 30 (1996) no. 1, pp. 1-14 | DOI | MR | Zbl
[Bri72] Sur les groupes de tresses (d'après Arnol'd), Séminaire Bourbaki, Volume 401 (1971/72), pp. 21-44 | Numdam | Zbl
[DZ98] Extended affine Weyl groups and Frobenius manifolds, Comp. Math., Volume 2 (1998), pp. 167-219 | DOI | MR | Zbl
[Fuc74] Quillenization and bordisms, Funct. Anal. Appl., Volume 8 (1974) no. 1, pp. 31-36 | DOI | Zbl
[Gor78] Cohomology of braid groups of series C and D and certain stratifications, Funct. Anal. Appl., Volume 12 (1978) no. 2, pp. 76-77 | MR | Zbl
[Gor81] Geometry of the bifurcation diagrams of simple projections onto a line, Funct. Anal. Appl., Volume 15 (1981) no. 2, pp. 77-82 | DOI | MR | Zbl
[Gor82] Cohomology of the braid groups of the series C and D, Trans. Moscow Math. Soc., Volume 42 (1982), pp. 232-241 | Zbl
[Knö82] Zum problem für isolierte singularitäten von vollstandiger durschnitten, Comp. Math., Volume 45 (1982) no. 3, pp. 330-340 | EuDML | Numdam | MR | Zbl
[Lin72] Superpositions of algebraic functions, Funct. Anal. Appl., Volume 6 (1972) no. 3, pp. 240-241 | DOI | MR | Zbl
[Lin76] Superpositions of algebraic functions, Funct. Anal. Appl., Volume 10 (1976) no. 1, pp. 32-38 | DOI | MR | Zbl
[May72] The geometry of iterated loop spaces, Lecture Notes in Math., 268, Springer-Verlag, Berlin-New York, 1972 | MR | Zbl
[Nap98] Discriminant and bifurcation diagram of complex trigonometric polynomials, C.R. Acad. Sci. Paris, Série I, Volume 327 (1998), pp. 771-776 | MR | Zbl
[Seg73] Configuration spaces and iterated loop-spaces, Invent. Math., Volume 21 (1973), pp. 213-221 | DOI | EuDML | MR | Zbl
[Vas89] Topological order complexes and resolutions of discriminant sets, Funct. Anal. Appl., Volume 23 (1989), pp. 24-36 | Zbl
[Vas92a] Complements of Discriminants of Smooth Maps: Topology and Applications, Mathematical Monographs, 98, Amer. Math. Soc., 1992 | MR | Zbl
[Vas92b] Developments in Mathematics: the Moscow School, chapter Invariants of knots and complements of discriminants (1992), pp. 195-250 | Zbl
Cité par Sources :