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COHOMOLOGY RINGS OF SPACES OF

GENERIC BIPOLYNOMIALS AND

EXTENDED AFFINE WEYL GROUPS

OF SERIE A

by Fabien NAPOLITANO

Introduction.

A polynomial is a holomorphic mapping of a sphere onto a sphere such
that some point on the target sphere has only one preimage. In his famous
paper on topological invariants of algebraic functions [Arn70a], Arnol’d
described the connections between braid groups, algebraic functions and
spaces of polynomials without multiple roots and he proved that the
cohomology rings of spaces of polynomials without double roots stabilize
when the degree of the polynomials tends to infinity. In the present paper
we similarly study the cohomology rings of the spaces of bipolynomials
without multiple roots. The study of bipolynomials has been initiated by
Goryunov [Gor81] and continued by Arnol’d [Arn96] in connection with
combinatorics of graphs. A bipolynomial of bidegree (k, R) is the restriction
of a polynomial in two variables

to the "hyperbola" wz = q. The space of bipolynomials of bidegree (k, f) is a
complex affine space of dimension k + f with coordinates (aI, ... , 
in 

Keywords : Extended affine Weyl groups - Bipolynomials - Rational functions - Stable
cohomology rings.
Math. classification : 55R80 - 55R40 - 20F36 - 20F55.
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Remark 1. - If q = 0 then h(z, w) is a polynomial on a pair of
intersecting lines in CC2. If q ~ 0 then h(z, w) is a Laurent polynomial in
the variable w (resp. z) with a pole of order k (resp. £) at infinity and a
pole of order (resp. 1~) at zero.

A generic bipolynomial of bidegree (k, .~) has k ~ .~ distinct roots.

DEFINITION 1. - The discriminant of the space pk,£ of bipolynomials
of bidegree (k, f) is the hypersurface of bipolynomials having less
than k + f distinct roots. The extended discriminant lk,£ is the union of
the discriminant with the hyperplane -y = 0 of improper bipolynomials.

The study of spaces of generic bipolynomials leads to many interesting
connections with rational functions, Brieskorn braid groups and generalized
braid groups associated to extended affine Weyl groups. Here are a few
examples:

1) The hypersurface is the complement to the branching manifold
of the rational function with two poles of order (I~, .~) given by the equations

(a root (w, z) is regarded as a function of the coefficients (ai , ... , ~)).
The complement to the discriminant is the base of a covering.
In particular the cohomology classes of spaces of generic bipolynomials
provide characteristic classes of rational functions with two poles (a similar
connection between generic polynomial and algebraic functions is described
in [Arn70b]).

2) A bipolynomial of bidegree (k, 0) is a polynomial of degree k in
the variable w. In particular the discriminant of the space coincides

with the discriminant of the space of polynomials of degree k. Hence 
is a hypersurface in and the complement to is a Eilenberg-
MacLane space K(-F, 1), where 7r is the braid group on l~ strings [Arn70a]
(7rl(pk,O - Br(k), 0 for i &#x3E; 1). The cohomology
classes of polynomials without multiple roots have been used by Arnol’d
in [Arn70b] to prove that algebraic functions of a given number of variables
cannot be obtained by superposition of algebraic functions of fewer variables

(the results of Arnol’d have been later improved by Lin [Lin72], [Lin76]
using other methods).
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3) A bipolynomial of bidegree (k, 1) is the restriction of a polynomial
in two variables

to the "hyperbola" wz = q. 0 such a bipolynomial has a double
root exactly when the polynomial in one variable w x 

w k+l + alw k -~ ~ ~ ~ + -f- akw + q has a double root. In particular
the extended discriminant of and the discriminant of the boundary
singularity Bk coincide (the discriminant of Bk is the subspace of

polynomials + alw k + - - - + + ~ having either a double
roots or a root in zero [Arn78]). In particular Ak,l is a hypersurface in 
and the complement to is a Eilenberg-MacLane space K(7r, 1), where
7r is the generalized braid group on k strings Br(Bk) (for the definition of
generalized braid groups see [Bri72]).

4) Dubrovin and Zhang [DZ98] proved that the complement to the
extended discriminant of pk,£ is homeomorphic to the space of regular orbits
of the extended affine Weyl group (A£). In particular the complement
to the extended discriminant is a Frobenius manifold.

5) Define the generalized braid group Br(k, .~) as the Poincaré group of
the space of regular orbits of the extended affine Weyl group (Ag ) (this
definition is analogous to the definition of generalized braid groups of types
B, C, D by Brieskorn [Bri72]). In [Nap98] we proved that the complement
to the extended discriminant is an Eilenberg-MacLane space In

particular the cohomology groups of the groups of generalized braids
coincide with the cohomology groups of the spaces pk,£ - 

Remark 2. - Contrarily to the complement of the extended

discriminant, the complement to the discriminant of is not a K(-F, 1)
(see [Kno82] for the case k = 2, f = 2).

Our main result is the stabilization of the cohomology rings of the
spaces and as the bidegree grows. More precisely
we prove the following theorem:

STABILISATION THEOREM. - The cohomology groups of the spaces
stabilize as k tends to infinity:
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where 2 l~~ denotes the integral part of 1 k. Moreover the stabilization of the
cohomologygroups are induced by natural embeddings cpk,f : - 

sending the complement of the discriminant (resp. extended discriminant)
to the complement of the discriminant (resp. extended discriminant).

From this theorem it follows that for any given the cohomology
rings of P~,~ - and P~,~ - stabilize as k tends to infinity. Hence
there exists a sequence of stable cohomology rings H* (P°°,~ - and

Moreover the theorem also implies that this sequence of
stable cohomology rings stabilize as f tends to infinity. Hence there exist
two bistable cohomology rings and 

Figure 1 represents the diagram of stabilization obtained. In Section 4 we
prove an analog of Snaith splitting formula for the stable cohomology
groups of 

Remark 3. - Some of the terms of this sequence of stable cohomology
rings are well known. The cohomology ring isomorphic
to the cohomology ring of the space of two fold loops in the three dimensional
sphere H*(SZ2(,S’3)) (May-Segal formula [May 72], [Seg73]) and also to the
cohomology ring of Artin’s braid group on an infinite number of strings
H* (Br(oo) ) (Arnol’d [Arn70a]). The cohomology ring LiOO,l)
is isomorphic to the cohomology ring H* X Q2S3) (Fuchs [Fuc74]),
where is the space of loops in the two dimensional sphere, and also to
the cohomology ring of the generalized braid group on an infinite number
of strings associated to the sequence of boundary singularities Bk
(Goryunov [Gor78], [Gor82]).

Remark 4. - According to Examples 2 and 3 above and Remark 3,
our theorem implies the stabilization of cohomology rings of braid groups
of types Ak and B k .

Remark 5. - The main results of Arnol’d paper [Arn70a] on the
cohomology of the spaces of polynomials without multiple roots consist
of three theorems: the stabilization, repetition and finiteness theorems.
In the setting of bipolynomials only the stabilization theorem holds: the
repetition and finiteness theorems do not hold already for the space P~,1

(see Example 3 and [Gor82]).

Remark 6. - This theorem corrects the result announced in [Nap98]
where the stability of the first 2 (1~ -f- .~)~ cohomology groups was asserted.
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Figure 1. Stabilization of cohomology rings of spaces of generic
bipolynomials. The number besides each arrow indicates the

number of coinciding cohomology groups for the complement
of the discriminant (resp. for the complement of the extended
discriminant).

The main tools in the proof of the stabilization theorem are Alexander
duality, simplicial resolutions and Mayer-Vietoris exact sequence.

Alexander duality relates the cohomology classes of the complement
to the discriminant to the Borel-Moore homology classes of the discriminant

(the Borel-Moore homology is the homology of the one point compactifica-
tion modulo the added point):

where Hj denotes the j-th Borel-Moore homology group. In particular to
prove the stabilization of the cohomology groups of the complement to
the discriminant it suffices to prove the dual theorem for the Borel-Moore

homology groups of the discriminant.

In general the discriminant is a space with many complicated
self-intersections. To study its homology group we replace it by its
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simplicial resolution. The simplicial resolution of the discriminant is a

topological space homotopy equivalent to the discriminant but where all
self intersections are replaced by simpler normal forms. The simplicial
resolution is endowed with a filtration corresponding to the stratification
of the space of bipolynomials by the number of multiple roots. This

stratification gives rise to a spectral sequence converging to the Borel-Moore
homology of the discriminant. The construction of the simplicial resolution
is based on analogous constructions of Vassiliev [Vas92a], [Vas92b], [Vas89].

Denote by the affine hypersurface ~ = 0 in pk,R. The extended
discriminant of pk,R is the union of and the discriminant. Mayer-
Vietoris exact sequence relates the Borel-Moore homology groups of

the extended discriminant and the Borel-Moore homology groups of the
discriminant. More precisely we have the following exact sequences for i &#x3E; 0:

By Alexander duality, this sequence induces a dual sequence linking the

cohomology groups of the complement to in and to

the cohomology groups of the complement to in Hence the

stabilization of the cohomology groups of the complement of the extended
discriminant is a consequence of the stabilization of the cohomology
groups of the complement to the discriminant in pk,l! and in (the
embedding induce morphisms of exact sequences).

1. Discriminants and bidegree shift.

To prove our main theorem we need to relate explicitly the spaces
This is done by considering neighborhood

LEMMA 1. - The discriminant is a quasi-homogeneous subspace
of pk,l.

Proof. Consider the family of maps P, -~ E R, A &#x3E; 0,
defined as follows: if q ~ 0, the map EA multiplies all roots of the Laurent
polynomial (resp. h(~y/z, z) ) by A~ (resp. ~~ ) . If -Y = 0, the map
EA multiplies all roots of the bipolynomial h(w, z) on the line z = 0 by A~
and all roots of h(w, z) on the line w = 0 by A . By definition E~ preserves
the multiplicities of all roots. In particular it sends the discriminant to
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itself. In the coordinates (a, , ... , ak, ak+l, ..., the map Ex is

given by

In particular the map Ex is quasi-homogeneous. Hence the discriminant
is a quasi-homogeneous subspace of 1:1

Define E &#x3E; 0, as the set of bipolynomials of bidegree (k, f)
whose roots in C x C have modulus less than c. Lemma 1 implies:

COROLLARY 1. - The space is homeomorphic to its intersection
with for any E &#x3E; 0.

Define c &#x3E; 0, as the set of bipolynomials of bidegree (k, f)
having 1~~.~-1 roots in C x C with modulus less than c and one root differing
from (-1, 0) by less than e. The set is an open neighborhood of the
bipolynomial h(w, z) = + 1) + zR on the hyperbola wz = 0.

Let 2 &#x3E; E &#x3E; 0. Consider the map ~ sending
the bipolynomial h(w, z) on the hyperbola wz == ~ to the bipolynomial
(w-~ 1) h(w, z) on the hyperbola wz = q. This map respects the multiplicities
of all roots. In particular it sends the discriminant to the discriminant.

Hence by Corollary 1, we get:

LEMMA 2. - The map cpk,R induces a morphism of cohomology rings:

2. Simplicial resolution of the discriminant.

The discriminant 0~ e has in general many complicated self-

intersections. The simplicial resolution is a topological space
Resolution( Ak, l) homotopy equivalent but where all self-

intersections are replaced by simpler normal forms.

Let h E be a bipolynomial on the hyperbola wz = ~. The set of

multiple roots of h is a finite set of points ~1),..., (wj, 
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lying on the hyperbola wz = ~y. For a generic point of the discriminant
Root(h) contains only one element. If the cardinal of Root(h) is j &#x3E; 1 then

h belongs to the j-fold self-intersection of the discriminant. The key idea
of the simplicial resolution is to replace h by a (j - 1 )-dimensional simplex
Simplex(h) such that each vertex of this simplex corresponds to one of the
branches of the discriminant intersecting in h (see Figure 2).

Consider a continuous map S’ from C x C to an affine space R N of

large dimension, such that the images of k + l distinct points of C x C by S
do not lie in an affine subspace of dimension k -(- ~ 2013 2 (the images of these
points generate a simplex of dimension k + f - 1). To the bipolynomial h,
associate the simplex Simplex(h) generated by the images of the multiple
roots of h under the map S. The simplicial resolution of is the union

of all simplices h x Simplex(h) in x over all bipolynomials h in the
discriminant of 

Remark 7. - The simplicial resolutions of and are

compatible with the embedding - this embedding
induces an embedding of the simplicial resolutions.

By construction the following lemma is straightforward:

LEMMA 3. - The projection map 7r : P~~~ x }aeN -7 P~~~ induces a

homotopy equivalence between Resolution(Ak,l ) and 

Figure 2. Simplicial resolutions of two-fold and three-fold self-intersections

3. The homological spectral sequence.

The simplicial resolution of is endowed with a natural filtration

associated to the stratification of the space of bipolynomials by the
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number of their multiple roots. The p-th term of this filtration is the

space defined as the union of all (j - 1 )-dimensional simplices,
j  p, h x Silnplex( (wi , zi), ... , (wj, zj ) ) such that {(W1, zi), ... , (wj, 
is a subset of Root(h). A bipolynomial of bidegree + £ cannot have more
than -1 (k + l) multiple roots. Hence Resolution (Ak,l) = (k+R)] and we

have the following sequence of inclusions: 

Resolution( (

(when there is no ambiguity on the bidegree (1~, .~), we denote F. (k, f
simply by 

Remark 8. - The filtration of Resolution(Ak,l) is compatible with
the map ~~,~ : ~~,~ induces a continuous map sending the p-th term of
the filtration of Resolution (Ak,l) to the p-th term of the filtration of

The calculation of the Borel-Moore homology groups of reduces

to the calculation of the spectral sequence associated to this filtration. The
first term of this spectral sequence is given by

The homology groups of the spaces are strongly
connected to the homology groups of the configuration spaces of

roots B~ (p) defined as follows. The space B£ (p) is the set of all

(wp, zp) ) of p distinct points in C x C such
that wizi = W2Z2 =....... - and if y = 0 at most [ ) £] points lie
on the line w = 0 (as in the introduction [x] denotes the integer part of x).
The following lemma is straightforward:

LEMMA 4. - The set of multiple roots of a bipolynomial belonging to
the p-fold self-intersection of is a configuration ( in B~ (p) . Moreover
if p  2 I~~, then for any configuration ( in B~ (p) the set of bipolynomials
having multiple roots at the points off is an affine subspace of real

codimension 4p -I- 2.

LEMMA 5. - Ifp  2 l~~ the spaces i. ) is a fiber bundle
above B~ (p) whose fibers are open cells of dimension
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Proof. Given a configuration ( == {(WI, z1),..., (wp, zp)} in Bl (p),
denote by Interior(() the interior of the simplex Simplex(() spanned by the
images of the points of ( by the map S. The space Fp_ (k, f )
is the union of all open simplices h x Interior( (W1, zi), ..., (wp zp)) such

is a subset of Root (h) . By definition of S
given a point ~ in Interior((), ( is the only configuration of p points
such that ~ belongs to Interior((). Hence to any point in Interior(()
we can associate unambiguously the configuration (. Hence there exists
a continuous projection map Fp(k, £) - B~ (p) . By Lemma 4,
if p  [ ) k] this map is onto and the fiber of this map above any configuration
( is the product of an open p - 1-dimensional simplex by an affine subspace
of of codimension 4p + 2. D

Consider the sheaf of coefficients ±Z on B~(p) changing sign along
loops inducing an odd permutation of zi), ..., (wp, zp) (this is the

orientation sheaf of the bundle -~ ~(p)). By Thom
isomorphism theorem and Lemma 5:

. 1 .

The following lemma is an easy consequence of the construction of
the simplicial resolution:

LEMMA 8. - For any non negative integer p, the dimension of the

space Fp (k, f) - is bounded:

By Lemma 6 we have

4. The formal cohomological spectral sequence.

Consider the formal cohomological spectral sequence Ef,q (k, f) defined
by

By Alexander duality this spectral sequence converges to the cohomology
groups of the space 
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Remark 9. - Since the map øk,£ is compatible with the filtrations of
the resolutions of and 0~+le, it induces a morphism of cohomological
spectral sequences.

By Equation (1), the cohomology groups Ef q(k, I!) and + 1, I!)
are isomorphic for - ~ 21~~ ~ p  0. Moreover the isomorphism between these
groups is induced by the map (~~. By Equation (2) the groups 
and Ep q are all zero for 2(1~ ~- .~) - p - q - 1 &#x3E; 2(1~ ~- ~) ~- p - 1. (In
particular the spectral sequence EP q is convergent.) Hence the differentials
from the unstable area do not occur in the stable area for p + q  [ -1 k]
(see Figure 3). This implies that, for any r &#x3E; 0, the groups EP,q (k, I!) and
Ep’q (k + 1, I!) such that p + q  2 k] coincide. Since the morphism between
the groups EP,q (k, I!) and + 1, I!) is induced by this implies the
stabilization theorem for the complement of the discriminant:

THEOREM 1. - For any integer .~ &#x3E; 0, the sequence of embeddings
&#x3E; 0, induces stabilization of the cohomology rings of the spaces

’I’ ÎI ’I 

as k tends to infinity:

Figure 3. Stable terms in the spectral sequence
differentials bT go from

Since the spectral sequence degenerates at the first term
for p + q  2 I~~, we obtain the following splitting formula for i  21~~ :
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THEOREM 2. - The stable cohomology groups of the space
are given by the following splitting formula:

Remark 10. - In the case ( = 0 this theorem and May-Segal formula
imply Snaith splitting formula for the cohomology of the 2-fold loop
space q2SI.

Proof. Just let 1~ tends to infinity in Formula (4). D

We conjecture that this formula also stabilizes and that the following
bi-stable splitting formula holds:

The constructions carried over for the complement of the discriminant
in can be carried over mutatis mutandis for the complement of the
discriminant in (in this case, instead of the configuration spaces B~(p),
we have to consider the configuration spaces Bo (p) of p distinct points on
the pair of lines w = 0, z = 0 such that at most 2 f] points lie on the
line w = 0). From this follows the stabilization of the cohomology rings of
the spaces 

THEOREM 3. - For any 0, the sequence of embeddings
k &#x3E; 0, induces stabilization of the cohomology rings of the spaces

as k tends to infinity:

By Alexander duality and Mayer-Vietoris exact sequence we obtain
the stabilization of the cohomology rings of the complement to the extended
discriminant.
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