[Un critère de Hilbert-Mumford général]
Let a reductive group act on an algebraic variety . We give a Hilbert-Mumford type criterion for the construction of open -invariant subsets admitting a good quotient by .
Soit une variété algébrique munie d’une action d’un groupe réductif . On donne un critère à la Hilbert-Mumford pour la construction des ouverts -stables admettant un bon quotient par .
Keywords: reductive group actions, good quotients
Mots-clés : actions des groupes réductifs, bons quotients
Hausen, Jürgen 1
@article{AIF_2003__53_3_701_0,
author = {Hausen, J\"urgen},
title = {A general {Hilbert-Mumford} criterion},
journal = {Annales de l'Institut Fourier},
pages = {701--712},
year = {2003},
publisher = {Association des Annales de l{\textquoteright}institut Fourier},
volume = {53},
number = {3},
doi = {10.5802/aif.1956},
zbl = {1044.14020},
mrnumber = {2008437},
language = {en},
url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1956/}
}
TY - JOUR AU - Hausen, Jürgen TI - A general Hilbert-Mumford criterion JO - Annales de l'Institut Fourier PY - 2003 SP - 701 EP - 712 VL - 53 IS - 3 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1956/ DO - 10.5802/aif.1956 LA - en ID - AIF_2003__53_3_701_0 ER -
Hausen, Jürgen. A general Hilbert-Mumford criterion. Annales de l'Institut Fourier, Tome 53 (2003) no. 3, pp. 701-712. doi: 10.5802/aif.1956
[1] Algebraic Quotients, R.V. Gamkrelidze (Encyclopedia of Mathematical Sciences), Volume Vol. 131 (2002), pp. 1-82 | Zbl
[2] Generalized moment functions and orbit spaces, Amer. J. Math, Volume Vol. 109 (1987), pp. 229-238 | DOI | Zbl
[3] A reduction theorem for existence of good quotients, Amer. J. Math, Volume Vol. 113 (1990), pp. 189-201 | DOI | Zbl
[4] On complete orbit spaces of -actions, Colloq. Math, Volume Vol. 55 (1988) no. 2, pp. 229-241 | Zbl
[5] On complete orbit spaces of -actions II, Colloq. Math, Volume Vol. 63 (1992) no. 1, pp. 9-20 | Zbl
[6] Open subsets of projective spaces with a good quotient by an action of a reductive group, Transform. Groups, Volume Vol. 1 (1996) no. 3, pp. 153-185 | DOI | Zbl
[7] Three theorems on existence of good quotients, Math. Ann, Volume 307 (1997), pp. 143-149 | DOI | Zbl
[8] Orbits of linear algebraic groups, Ann. Math., Ser. 2, Volume 93 (1971), pp. 459-475 | DOI | Zbl | MR
[9] The homogeneous coordinate ring of a toric variety, J. Algebr. Geom, Volume Vol. 4 (1995) no. 1, pp. 17-50 | Zbl | MR
[10] Equivariant embeddings into smooth toric varieties, Canad. Math. J, Volume Vol. 54 (2002) no. 3, pp. 554-570 | DOI | Zbl | MR
[11] Producing good quotients by embedding into toric varieties (Sémin. et Congrès), Volume 6 (2002), pp. 193-212 | Zbl
[12] A Hilbert-Mumford Criterion for -actions (to appear in Colloq. Math.) | Zbl | MR
[13] Quotients of toric varieties by actions of subtori, Colloq. Math, Volume 82 (1999) no. 1, pp. 105-116 | Zbl | MR
[14] A combinatorial construction of sets with good quotients by an action of a reductive group, Colloq. Math, Volume 87 (2001) no. 1, pp. 85-102 | DOI | Zbl | MR
[15] Embeddings in toric varieties and prevarieties, J. Algebr. Geom, Volume 2 (1993) no. 4, pp. 705-726 | Zbl | MR
Cité par Sources :



