We classify all finitely generated integral algebras with a rational action of a reductive group such that any invariant subalgebra is finitely generated. Some results on affine embeddings of homogeneous spaces are also given.
Nous classifions des algèbres intègres finiment engendrées munies d’une action rationnelle d’un groupe réductif connexe avec la propriété suivante : toute sous- algèbre -invariante est finiment engendrée. De plus nous obtenons quelques résultats sur les plongements affines des espaces homogènes.
Classification: 13A50, 13E15, 14L17, 14L30, 14M17, 14R20
Keywords: algebraic groups, rational -algebras, quasi-affine homogeneous spaces, affine embeddings
@article{AIF_2003__53_2_379_0, author = {Arzhantsev, Ivan V.}, title = {Algebras with finitely generated invariant subalgebras}, journal = {Annales de l'Institut Fourier}, pages = {379--398}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {53}, number = {2}, year = {2003}, doi = {10.5802/aif.1947}, mrnumber = {1990001}, zbl = {1099.13500}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1947/} }
TY - JOUR TI - Algebras with finitely generated invariant subalgebras JO - Annales de l'Institut Fourier PY - 2003 DA - 2003/// SP - 379 EP - 398 VL - 53 IS - 2 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1947/ UR - https://www.ams.org/mathscinet-getitem?mr=1990001 UR - https://zbmath.org/?q=an%3A1099.13500 UR - https://doi.org/10.5802/aif.1947 DO - 10.5802/aif.1947 LA - en ID - AIF_2003__53_2_379_0 ER -
Arzhantsev, Ivan V. Algebras with finitely generated invariant subalgebras. Annales de l'Institut Fourier, Volume 53 (2003) no. 2, pp. 379-398. doi : 10.5802/aif.1947. https://aif.centre-mersenne.org/articles/10.5802/aif.1947/
Dense orbits with two ends, Math. USSR-Izv. (English trans.), Tome 11 (1977) no. 2, pp. 293-307 | MR: 472848 | Zbl: 0373.14016
Classification of three-dimensional affine algebraic varieties that are quasihomogeneous with respect to an algebraic group, Math. USSR-Izv. (English trans.), Tome 9 (1975), pp. 535-576 | Article | Zbl: 0378.14009
A certain class of quasihomogeneous affine algebraic varieties, Math. USSR-Izv. (English trans.), Tome 6 (1972), pp. 743-758 | Article | MR: 1835666 | Zbl: 1010.14011
Invariant Theory, Algebraic Geometry IV (Encyclopaedia of Math. Sciences (English trans.)) Tome vol. 55 (1994), pp. 123-278 | MR: 1183796 | Zbl: 0767.20017
Description of the observable subgroups of linear algebraic groups, Math. USSR-Sb. (English trans.), Tome 65 (1990) no. 1, pp. 97-108 | Article | MR: 1016427 | Zbl: 0701.14052
[Ak77] Dense orbits with two ends, Izv. Akad. Nauk SSSR, Ser. Mat (in Russian), Tome 41 (1977) no. 2, pp. 308-324 | MR: 1489234 | Zbl: 0886.14020
[AT01] Affine embeddings with a finite number of orbits, Transformation Groups, Tome 6 (2001) no. 2, pp. 101-110 | Article | MR: 244261 | Zbl: 0159.22401
[BB92] Sous-groupes épimorphiques de groupes linéaires algébriques I, C. R. Acad. Sci. Paris, Série I, Tome 315 (1992), pp. 649-653 | MR: 396773 | Zbl: 0471.20029
[Br89] Groupe de Picard et nombres caractéristiques des variétés sphériques, Duke Math. J, Tome 58 (1989) no. 2, pp. 397-424 | Article | MR: 506989 | Zbl: 0406.14031
[Gr97] Algebraic Homogeneous Spaces and Invariant Theory, LNM, Tome 1673, Springer-Verlag, Berlin, 1997 | MR: 1718227 | Zbl: 1023.22013
[Ho69] Fixed point schemes of additive group actions, Topology, Tome 8 (1969), pp. 233-242 | Article | MR: 544240 | Zbl: 0444.14010
[Hu75] Linear Algebraic Groups, Grad. Texts in Math, Tome 21, Springer-Verlag, New-York, 1975 | Article | MR: 1973585 | Zbl: 1054.20026
[Ke78] Instability in invariant theory, Ann. of Math, Tome 108 (1978) no. 2, pp. 299-316 | Article | Numdam | MR: 342523 | Zbl: 0286.14014
[La99] Homogeneous spaces of compact connected Lie groups which admit nontrivial invariant algebras, Journal of Lie Theory, Tome 9 (1999), pp. 355-360 | Article | MR: 376704 | Zbl: 0315.14018
[LR79] A generalization of the Chevalley restriction theorem, Duke Math. J, Tome 46 (1979) no. 3, pp. 487-496 | Article | MR: 1476899 | Zbl: 0891.20032
[LS03] Variations on a theme of Steinberg, Journal of Algebra, Tome 260 (2003), pp. 261-297 | Article | MR: 376702 | Zbl: 0308.14009
[Lu73] Slices étales, Bull. Soc. Math. France, Paris, Tome Mémoire 33 (1973), pp. 81-105 | Article | MR: 376702 | Zbl: 0331.14026
[Lu75] Adhérences d'orbite et invariants, Invent. Math, Tome 29 (1975), pp. 231-238 | Article | MR: 313260 | Zbl: 0248.14014
[McN98] Dimensional criteria for semisimplicity of representations, Proc. London Math. Soc (3), Tome 76 (1998), pp. 95-149 | Article | Zbl: 0255.14016
[Po75] Classification of three-dimensional affine algebraic varieties that are quasihomogeneous with respect to an algebraic group, Izv. Akad. Nauk SSSR, Ser. Mat. (in Russian), Tome 39 (1975) no. 3, pp. 566-609 | Zbl: 0735.14010
[PV72] A certain class of quasihomogeneous affine algebraic varieties, Izv. Akad. Nauk SSSR, Ser. Mat (in Russian), Tome 36 (1972), pp. 749-764 | Zbl: 0789.14008
[PV89] Invariant Theory, VINITI, Moscow, 1989 (Itogy Nauki i Tekhniki, Sovr. Problemy Mat. Fund. Napravlenia (in Russian)) Tome vol. 5 (1989), pp. 137-309 | Article | MR: 437549 | Zbl: 0355.14020
[Ri77] Affine coset spaces of reductive algebraic groups, Bull. London Math. Soc, Tome 9 (1977), pp. 38-41 | Article | MR: 965881 | Zbl: 0663.20043
[Su88] Description of the observable subgroups of linear algebraic groups, Mat. Sbornik (in Russian), Tome 137 (1988) no. 1, pp. 90-102 | Article | MR: 965881 | Zbl: 0663.20043
Cited by Sources: