[Algèbres dont toute sous-algèbre invariante est finiment engendrée]
Nous classifions des algèbres intègres finiment engendrées munies d’une action rationnelle d’un groupe réductif connexe avec la propriété suivante : toute sous- algèbre -invariante est finiment engendrée. De plus nous obtenons quelques résultats sur les plongements affines des espaces homogènes.
We classify all finitely generated integral algebras with a rational action of a reductive group such that any invariant subalgebra is finitely generated. Some results on affine embeddings of homogeneous spaces are also given.
Keywords: algebraic groups, rational $G$-algebras, quasi-affine homogeneous spaces, affine embeddings
Mot clés : groupes algébriques, $S$-algèbres rationnelles, espaces homogènes quasi-affines, plongements affines
Arzhantsev, Ivan V. 1
@article{AIF_2003__53_2_379_0, author = {Arzhantsev, Ivan V.}, title = {Algebras with finitely generated invariant subalgebras}, journal = {Annales de l'Institut Fourier}, pages = {379--398}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {53}, number = {2}, year = {2003}, doi = {10.5802/aif.1947}, zbl = {1099.13500}, mrnumber = {1990001}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1947/} }
TY - JOUR AU - Arzhantsev, Ivan V. TI - Algebras with finitely generated invariant subalgebras JO - Annales de l'Institut Fourier PY - 2003 SP - 379 EP - 398 VL - 53 IS - 2 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1947/ DO - 10.5802/aif.1947 LA - en ID - AIF_2003__53_2_379_0 ER -
%0 Journal Article %A Arzhantsev, Ivan V. %T Algebras with finitely generated invariant subalgebras %J Annales de l'Institut Fourier %D 2003 %P 379-398 %V 53 %N 2 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.1947/ %R 10.5802/aif.1947 %G en %F AIF_2003__53_2_379_0
Arzhantsev, Ivan V. Algebras with finitely generated invariant subalgebras. Annales de l'Institut Fourier, Tome 53 (2003) no. 2, pp. 379-398. doi : 10.5802/aif.1947. https://aif.centre-mersenne.org/articles/10.5802/aif.1947/
[Ak77] Dense orbits with two ends, Izv. Akad. Nauk SSSR, Ser. Mat (in Russian), Volume 41 (1977) no. 2, pp. 308-324 | MR | Zbl
[Ak77] Dense orbits with two ends, Math. USSR-Izv. (English trans.), Volume 11 (1977) no. 2, pp. 293-307 | Zbl
[AT01] Affine embeddings with a finite number of orbits, Transformation Groups, Volume 6 (2001) no. 2, pp. 101-110 | DOI | MR | Zbl
[BB92] Sous-groupes épimorphiques de groupes linéaires algébriques I, C. R. Acad. Sci. Paris, Série I, Volume 315 (1992), pp. 649-653 | MR | Zbl
[Br89] Groupe de Picard et nombres caractéristiques des variétés sphériques, Duke Math. J, Volume 58 (1989) no. 2, pp. 397-424 | MR | Zbl
[Gr97] Algebraic Homogeneous Spaces and Invariant Theory, LNM, 1673, Springer-Verlag, Berlin, 1997 | MR | Zbl
[Ho69] Fixed point schemes of additive group actions, Topology, Volume 8 (1969), pp. 233-242 | DOI | MR | Zbl
[Hu75] Linear Algebraic Groups, Grad. Texts in Math, 21, Springer-Verlag, New-York, 1975 | MR | Zbl
[Ke78] Instability in invariant theory, Ann. of Math, Volume 108 (1978) no. 2, pp. 299-316 | DOI | MR | Zbl
[La99] Homogeneous spaces of compact connected Lie groups which admit nontrivial invariant algebras, Journal of Lie Theory, Volume 9 (1999), pp. 355-360 | MR | Zbl
[LR79] A generalization of the Chevalley restriction theorem, Duke Math. J, Volume 46 (1979) no. 3, pp. 487-496 | DOI | MR | Zbl
[LS03] Variations on a theme of Steinberg, Journal of Algebra, Volume 260 (2003), pp. 261-297 | DOI | MR | Zbl
[Lu73] Slices étales, Bull. Soc. Math. France, Paris, Volume Mémoire 33 (1973), pp. 81-105 | Numdam | MR | Zbl
[Lu75] Adhérences d'orbite et invariants, Invent. Math, Volume 29 (1975), pp. 231-238 | DOI | MR | Zbl
[McN98] Dimensional criteria for semisimplicity of representations, Proc. London Math. Soc (3), Volume 76 (1998), pp. 95-149 | DOI | MR | Zbl
[Po75] Classification of three-dimensional affine algebraic varieties that are quasihomogeneous with respect to an algebraic group, Izv. Akad. Nauk SSSR, Ser. Mat. (in Russian), Volume 39 (1975) no. 3, pp. 566-609 | MR | Zbl
[Po75] Classification of three-dimensional affine algebraic varieties that are quasihomogeneous with respect to an algebraic group, Math. USSR-Izv. (English trans.), Volume 9 (1975), pp. 535-576 | DOI | MR | Zbl
[PV72] A certain class of quasihomogeneous affine algebraic varieties, Izv. Akad. Nauk SSSR, Ser. Mat (in Russian), Volume 36 (1972), pp. 749-764 | MR | Zbl
[PV72] A certain class of quasihomogeneous affine algebraic varieties, Math. USSR-Izv. (English trans.), Volume 6 (1972), pp. 743-758 | Zbl
[PV89] Invariant Theory, VINITI, Moscow, 1989 (Itogy Nauki i Tekhniki, Sovr. Problemy Mat. Fund. Napravlenia (in Russian)), Volume vol. 5 (1989), pp. 137-309 | Zbl
[PV89] Invariant Theory, Algebraic Geometry IV (Encyclopaedia of Math. Sciences (English trans.)), Volume vol. 55 (1994), pp. 123-278 | Zbl
[Ri77] Affine coset spaces of reductive algebraic groups, Bull. London Math. Soc, Volume 9 (1977), pp. 38-41 | DOI | MR | Zbl
[Su88] Description of the observable subgroups of linear algebraic groups, Mat. Sbornik (in Russian), Volume 137 (1988) no. 1, pp. 90-102 | MR | Zbl
[Su88] Description of the observable subgroups of linear algebraic groups, Math. USSR-Sb. (English trans.), Volume 65 (1990) no. 1, pp. 97-108 | DOI | MR | Zbl
Cité par Sources :