Algebras with finitely generated invariant subalgebras
[Algèbres dont toute sous-algèbre invariante est finiment engendrée]
Annales de l'Institut Fourier, Tome 53 (2003) no. 2, pp. 379-398.

Nous classifions des algèbres intègres finiment engendrées munies d’une action rationnelle d’un groupe réductif connexe G avec la propriété suivante : toute sous- algèbre G-invariante est finiment engendrée. De plus nous obtenons quelques résultats sur les plongements affines des espaces homogènes.

We classify all finitely generated integral algebras with a rational action of a reductive group such that any invariant subalgebra is finitely generated. Some results on affine embeddings of homogeneous spaces are also given.

DOI : 10.5802/aif.1947
Classification : 13A50, 13E15, 14L17, 14L30, 14M17, 14R20
Keywords: algebraic groups, rational $G$-algebras, quasi-affine homogeneous spaces, affine embeddings
Mot clés : groupes algébriques, $S$-algèbres rationnelles, espaces homogènes quasi-affines, plongements affines

Arzhantsev, Ivan V. 1

1 Moscow State University, Department of Mathematics and Mechanics, Chair of Higher Algebra, Vorobievy Gory, GSP-2, Moscow 119992 (Russie)
@article{AIF_2003__53_2_379_0,
     author = {Arzhantsev, Ivan V.},
     title = {Algebras with finitely generated invariant subalgebras},
     journal = {Annales de l'Institut Fourier},
     pages = {379--398},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {53},
     number = {2},
     year = {2003},
     doi = {10.5802/aif.1947},
     zbl = {1099.13500},
     mrnumber = {1990001},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1947/}
}
TY  - JOUR
AU  - Arzhantsev, Ivan V.
TI  - Algebras with finitely generated invariant subalgebras
JO  - Annales de l'Institut Fourier
PY  - 2003
SP  - 379
EP  - 398
VL  - 53
IS  - 2
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.1947/
DO  - 10.5802/aif.1947
LA  - en
ID  - AIF_2003__53_2_379_0
ER  - 
%0 Journal Article
%A Arzhantsev, Ivan V.
%T Algebras with finitely generated invariant subalgebras
%J Annales de l'Institut Fourier
%D 2003
%P 379-398
%V 53
%N 2
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.1947/
%R 10.5802/aif.1947
%G en
%F AIF_2003__53_2_379_0
Arzhantsev, Ivan V. Algebras with finitely generated invariant subalgebras. Annales de l'Institut Fourier, Tome 53 (2003) no. 2, pp. 379-398. doi : 10.5802/aif.1947. https://aif.centre-mersenne.org/articles/10.5802/aif.1947/

[Ak77] D. N. Akhiezer Dense orbits with two ends, Izv. Akad. Nauk SSSR, Ser. Mat (in Russian), Volume 41 (1977) no. 2, pp. 308-324 | MR | Zbl

[Ak77] D. N. Akhiezer Dense orbits with two ends, Math. USSR-Izv. (English trans.), Volume 11 (1977) no. 2, pp. 293-307 | Zbl

[AT01] I. V. Arzhantsev; D. A. Timashev Affine embeddings with a finite number of orbits, Transformation Groups, Volume 6 (2001) no. 2, pp. 101-110 | DOI | MR | Zbl

[BB92] F. Bien; A. Borel Sous-groupes épimorphiques de groupes linéaires algébriques I, C. R. Acad. Sci. Paris, Série I, Volume 315 (1992), pp. 649-653 | MR | Zbl

[Br89] M. Brion Groupe de Picard et nombres caractéristiques des variétés sphériques, Duke Math. J, Volume 58 (1989) no. 2, pp. 397-424 | MR | Zbl

[Gr97] F. D. Grosshans Algebraic Homogeneous Spaces and Invariant Theory, LNM, 1673, Springer-Verlag, Berlin, 1997 | MR | Zbl

[Ho69] G. Horroks Fixed point schemes of additive group actions, Topology, Volume 8 (1969), pp. 233-242 | DOI | MR | Zbl

[Hu75] J. E. Humphreys Linear Algebraic Groups, Grad. Texts in Math, 21, Springer-Verlag, New-York, 1975 | MR | Zbl

[Ke78] G. Kempf Instability in invariant theory, Ann. of Math, Volume 108 (1978) no. 2, pp. 299-316 | DOI | MR | Zbl

[La99] I. A. Latypov Homogeneous spaces of compact connected Lie groups which admit nontrivial invariant algebras, Journal of Lie Theory, Volume 9 (1999), pp. 355-360 | MR | Zbl

[LR79] D. Luna; R. W. Richardson A generalization of the Chevalley restriction theorem, Duke Math. J, Volume 46 (1979) no. 3, pp. 487-496 | DOI | MR | Zbl

[LS03] M. W. Liebeck; G. M. Seitz Variations on a theme of Steinberg, Journal of Algebra, Volume 260 (2003), pp. 261-297 | DOI | MR | Zbl

[Lu73] D. Luna Slices étales, Bull. Soc. Math. France, Paris, Volume Mémoire 33 (1973), pp. 81-105 | Numdam | MR | Zbl

[Lu75] D. Luna Adhérences d'orbite et invariants, Invent. Math, Volume 29 (1975), pp. 231-238 | DOI | MR | Zbl

[McN98] G. J. McNinch Dimensional criteria for semisimplicity of representations, Proc. London Math. Soc (3), Volume 76 (1998), pp. 95-149 | DOI | MR | Zbl

[Po75] V. L. Popov Classification of three-dimensional affine algebraic varieties that are quasihomogeneous with respect to an algebraic group, Izv. Akad. Nauk SSSR, Ser. Mat. (in Russian), Volume 39 (1975) no. 3, pp. 566-609 | MR | Zbl

[Po75] V. L. Popov Classification of three-dimensional affine algebraic varieties that are quasihomogeneous with respect to an algebraic group, Math. USSR-Izv. (English trans.), Volume 9 (1975), pp. 535-576 | DOI | MR | Zbl

[PV72] V. L. Popov; E. B. Vinberg A certain class of quasihomogeneous affine algebraic varieties, Izv. Akad. Nauk SSSR, Ser. Mat (in Russian), Volume 36 (1972), pp. 749-764 | MR | Zbl

[PV72] V. L. Popov; E. B. Vinberg A certain class of quasihomogeneous affine algebraic varieties, Math. USSR-Izv. (English trans.), Volume 6 (1972), pp. 743-758 | Zbl

[PV89] V. L. Popov; E. B. Vinberg Invariant Theory, VINITI, Moscow, 1989 (Itogy Nauki i Tekhniki, Sovr. Problemy Mat. Fund. Napravlenia (in Russian)), Volume vol. 5 (1989), pp. 137-309 | Zbl

[PV89] V. L. Popov; E. B. Vinberg Invariant Theory, Algebraic Geometry IV (Encyclopaedia of Math. Sciences (English trans.)), Volume vol. 55 (1994), pp. 123-278 | Zbl

[Ri77] R. W. Richardson Affine coset spaces of reductive algebraic groups, Bull. London Math. Soc, Volume 9 (1977), pp. 38-41 | DOI | MR | Zbl

[Su88] A. A. Sukhanov Description of the observable subgroups of linear algebraic groups, Mat. Sbornik (in Russian), Volume 137 (1988) no. 1, pp. 90-102 | MR | Zbl

[Su88] A. A. Sukhanov Description of the observable subgroups of linear algebraic groups, Math. USSR-Sb. (English trans.), Volume 65 (1990) no. 1, pp. 97-108 | DOI | MR | Zbl

Cité par Sources :