Collective geodesic flows
[Flots géodésiques collectifs]
Annales de l'Institut Fourier, Tome 53 (2003) no. 1, pp. 265-308.

On démontre que la plupart des groupes de Lie semi-simples et compacts, admettent plusieurs métriques riemanniennes invariantes à gauche dont le flot géodésique possède une entropie topologique positive. De plus, on démontre que, sur la plupart des espaces homogènes, il existe dans chaque voisinage de la métrique bi-invariante, des métriques riemanniennes "collectives", dont le flot géodésique possède une entropie topologique positive. On discute des autres propriétés du flot géodésique collectif.

We show that most compact semi-simple Lie groups carry many left invariant metrics with positive topological entropy. We also show that many homogeneous spaces admit collective Riemannian metrics arbitrarily close to the bi-invariant metric and whose geodesic flow has positive topological entropy. Other properties of collective geodesic flows are also discussed.

DOI : 10.5802/aif.1944
Classification : 53D25, 37D40, 37B40, 53D20
Keywords: collective geodesic flows, topological entropy, semi-simple Lie algebras, moment map, Melnikov integral
Mot clés : flots géodésiques collectifs, entropie topologique, algèbres de Lie semi-simples, application du moment, intégrale de Melnikov

Butler, Léo T. 1 ; Paternain, Gabriel P. 2

1 Northwestern University Department of Mathematics, 2033 Sheridan Road, Evanston, IL 60208 (USA)
2 University of Cambridge, Department of Pure Mathematics and Mathematical Statistics, Cambridge CB3 0WB (Royaume-Uni)
@article{AIF_2003__53_1_265_0,
     author = {Butler, L\'eo T. and Paternain, Gabriel P.},
     title = {Collective geodesic flows},
     journal = {Annales de l'Institut Fourier},
     pages = {265--308},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {53},
     number = {1},
     year = {2003},
     doi = {10.5802/aif.1944},
     zbl = {1066.53135},
     mrnumber = {1973073},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1944/}
}
TY  - JOUR
AU  - Butler, Léo T.
AU  - Paternain, Gabriel P.
TI  - Collective geodesic flows
JO  - Annales de l'Institut Fourier
PY  - 2003
SP  - 265
EP  - 308
VL  - 53
IS  - 1
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.1944/
DO  - 10.5802/aif.1944
LA  - en
ID  - AIF_2003__53_1_265_0
ER  - 
%0 Journal Article
%A Butler, Léo T.
%A Paternain, Gabriel P.
%T Collective geodesic flows
%J Annales de l'Institut Fourier
%D 2003
%P 265-308
%V 53
%N 1
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.1944/
%R 10.5802/aif.1944
%G en
%F AIF_2003__53_1_265_0
Butler, Léo T.; Paternain, Gabriel P. Collective geodesic flows. Annales de l'Institut Fourier, Tome 53 (2003) no. 1, pp. 265-308. doi : 10.5802/aif.1944. https://aif.centre-mersenne.org/articles/10.5802/aif.1944/

[9] V. Guillemin; S. Sternberg The moment map and collective motion, Ann. Physics, Volume 127 (1980), pp. 220-253 | DOI | MR | Zbl

[1] M. Adler; P. van; Moerbeke Geodesic flow on SO (4) and the intersection of quadrics, Proc. Nat. Acad. Sci. U.S.A, Volume 81 (1984), pp. 4613-4616 | DOI | MR | Zbl

[2] M. Adler; P. van; Moerbeke The algebraic integrability of geodesic flow on so(4), Invent. Math, Volume 67 (1982), pp. 297-331 | DOI | MR | Zbl

[3] V. I. Arnold Dynamical Systems III, Encyclopaedia of Mathematical Sciences, Springer Verlag, Berlin, 1988 | MR | Zbl

[4] O. I. Bogoyavlensky Integrable Euler equations on so(4) and their physical applications, Comm. Math. Phys, Volume 93 (1984), pp. 417-436 | DOI | MR | Zbl

[5] A.V. Bolsinov; A.T. Fomenko Orbital isomorphism between two classical integrable systems. The Euler case and the Jacobi problem, Lie groups and Lie algebras (Math. Appl), Volume 433 (1998), pp. 359-382 | Zbl

[6] R. Bowen Entropy for Group Endomorphisms and Homogeneous spaces, Trans. of Am. Math. Soc, Volume 153 (1971), pp. 401-414 | DOI | MR | Zbl

[7] K. Burns; H. Weiss A geometric criterion for positive topological entropy, Comm. Math. Phys, Volume 172 (1995), pp. 95-118 | DOI | MR | Zbl

[8] V. Guillemin; S. Sternberg Symplectic techniques in physics, Cambridge University Press, Cambridge, 1984 | MR | Zbl

[10] L. Haine The algebraic complete integrability of geodesic flow on so (N), Comm. Math. Phys, Volume 94 (1984), pp. 271-287 | DOI | MR | Zbl

[11] H. Hancock Lectures on the Theory of Elliptic Functions, Dover, New York, 1909 (reprint 1958)

[12] B. Hasselblatt; A. Katok Introduction to the modern theory of dynamical systems, Encyclopedia of Mathematics and its Applications, 54, Cambridge University Press, 1995 | MR | Zbl

[13] S. Helgason Differential geometry, Lie groups, and symmetric spaces, American Mathematical Society, Providence, RI, 2001. Corrected reprint of the 1978 original | MR | Zbl

[14] P. Holmes; J. Marsden Horseshoes and Arnol ' d diffusion for Hamiltonian systems on Lie groups, Indiana Univ. Math. J, Volume 32 (1983), pp. 273-309 | DOI | MR | Zbl

[15] W. Klingenberg Riemannian Geometry, De Gruyter, Berlin-New York, 1982 | MR | Zbl

[16] V.V. Kozlov; D.A. Onishchenko Nonintegrability of Kirchhoff's equations (Russian), Dokl. Akad. Nauk SSSR, Volume 266 (1982), pp. 1298-1300 | MR | Zbl

[17] S. V. Manakov A remark on the integration of the {E}ulerian equations of the dynamics of an n-dimensional rigid body, Funkcional. Anal. i Priložen., Volume 10 (1976), pp. 93-94 | MR | Zbl

[18] R. Mañé On the topological entropy of geodesic flows, J. Diff. Geom, Volume 45 (1997), pp. 74-93 | MR | Zbl

[19] A. S. Miščenko Integrals of geodesic flows on Lie groups, Funkcional. Anal. i Priložen., Volume 4 (1970), pp. 73-77 | MR

[20] A. S. Miščenko; A. T. Fomenko The integration of Euler equations on a semisimple Lie algebra, Dokl. Akad. Nauk SSSR, Volume 231 (1976), pp. 536-538 | MR | Zbl

[21] A. S. Miščenko; A. T. Fomenko A generalized Liouville method for the integration of Hamiltonian systems, Funkcional. Anal. i Priložen., Volume 12 (1978), pp. 46-56 | MR | Zbl

[22] O.E. Orel Euler-Poinsot dynamical systems and geodesic flows of ellipsoids: topologically nonconjugation, Tensor and vector analysis (1998), pp. 76-84 | Zbl

[23] C. Robinson Horseshoes for autonomous Hamiltonian systems using the Melnikov integral, Ergodic Theory Dynam. Systems (Charles Conley Memorial Issue), Volume 8* (1988), pp. 395-409 | Zbl

[24] A. Thimm Integrable geodesic flows on homogeneous spaces, Ergod. Th. and Dyn. Syst, Volume 1 (1981), pp. 495-517 | MR | Zbl

[25] A.P. Veselov Conditions for the integrability of Euler equations on so(4), (Russian), Dokl. Akad. Nauk SSSR, Volume 270 (1983), pp. 1298-1300 | MR | Zbl

[26] P. Walters An introduction to ergodic theory, Graduate Texts in Mathematics, Springer-Verlag, New York-Heidelberg-Berlin, 1982 | MR | Zbl

[27] A. Weinstein The local structure of Poisson manifolds, J. Differential Geom, Volume 18 (1983), pp. 523-557 | MR | Zbl

[28] Z. Xia Homoclinic points and intersections of Lagrangian submanifolds, Discrete Contin. Dynam. Systems, Volume 6 (2000), pp. 243-253 | DOI | MR | Zbl

Cité par Sources :